Skip to main content

Advertisement

Log in

Size and doping effects on the magnetic and electric properties of Bi\(_2\)Fe\(_4\)O\(_9\) nanoparticles

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the present paper we propose a microscopic model to study the multiferroic properties of Bi\(_2\)Fe\(_4\)O\(_9\) nanoparticles. The spontaneous magnetization \(M_s\) increases with decreasing nanoparticle size. \(M_s\) is shape dependent. It is larger for cylindrical than for spherical nanoparticles. \(M_s\) increases with increasing Co and Ho concentration, whereas by Mn doping it decreases. These tunable magnetic properties can be widely applied in spintronics. The polarization \(P_s\) increases also with decreasing nanoparticle size. Mn ion doping leads to increase of \(P_s\), the phase transition temperature \(T_C\) and the dielectric constant and so to enhanced electric and dielectric properties of Bi\(_2\)Fe\(_4\)O\(_9\) nanoparticles. Applying an external magnetic field \(P_s\) is enhanced, which is indirect evidence for a strong magnetoelectric coupling. The specific heat \(C_p\) shows an anomaly at the Neel temperature \(T_N\) which vanishes by applying an external magnetic field. The band gap energy \(E_g\) decreases with increasing Ti, Co and Ho dopants whereas by Mn doping \(E_g\) increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Derived data supporting the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. M. Pooladi, I. Sharifi, M. Behzadipour, Ceram. Int. 46, 18453 (2020)

    Article  Google Scholar 

  2. T.M. Gesing, R.X. Fischer, M. Burianek, M. Muehlberg, T. Debnath, C.H. Ruescher, J. Ottinger, J.C. Buhl, H. Schneider, J. Eur. Ceram. Soc. 31, 3055 (2011)

    Article  Google Scholar 

  3. S.R. Mohapatra, B. Sahu, T. Badapanda, M.S. Pattanaik, S.D. Kaushik, A.K. Singh, J. Mater. Sci.: Mater. Electron. 27, 3645 (2016)

    Google Scholar 

  4. A.K. Singh, S.D. Kaushik, B. Kumar, P.K. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik, Appl. Phys. Lett. 92, 132910 (2008)

    Article  ADS  Google Scholar 

  5. A.M. Abakumov, D. Batuk, A.A. Tsirlin, C. Prescher, L. Dubrovinsky, D.V. Sheptyakov, W. Schnelle, J. Hadermann, G.V. Tendeloo, Phys. Rev. B 87, 024423 (2013)

    Article  ADS  Google Scholar 

  6. E. Ressouche, V. Simonet, B. Canals, M. Gospodinov, V. Skumryev, Phys. Rev. Lett. 103, 267204 (2009)

    Article  ADS  Google Scholar 

  7. S.R. Mohapatra, P.N. Vishwakarma, S.D. Kaushik, R.J. Choudhary, N. Mohapatra, A.K. Singh, J. Appl. Phys. 121, 124101 (2017)

    Article  ADS  Google Scholar 

  8. N. Shamir, E. Gurewitz, H. Shaked, Acta Crystallogr. A 34, 662 (1978)

    Article  ADS  Google Scholar 

  9. S.R. Mohapatra, P.N. Vishwakarma, S.D. Kaushik, A.K. Singh, J. Appl. Phys. 122, 134103 (2017)

    Article  ADS  Google Scholar 

  10. N. Niizeki, M. Wachi, Z. Kristallogr. 127, 173 (1968)

    Article  Google Scholar 

  11. X.H. Wu, J. Miao, Y. Zhao, X.B. Meng, X.G. Xu, S.G. Wang, Y. Jiang, Otoelectr. Adv. Mater. 7, 116 (2013)

    Google Scholar 

  12. Y.A. Park, K.M. Song, K.D. Lee, C.J. Won, N. Hur, Appl. Phys. Lett. 96, 092506 (2010)

    Article  ADS  Google Scholar 

  13. T. Wu, L. Liu, M. Pi, D. Zhang, S. Chen, Appl. Surf. Sci. 377, 253 (2016)

    Article  ADS  Google Scholar 

  14. G.C. Papaefthymiou, A.J. Viescas, J.-M. Le Breton, H. Chiron, J. Juraszek, T.-J. Park, S.S. Wong, Curr. Appl. Phys. 15, 417 (2015)

    Article  ADS  Google Scholar 

  15. Q. Zhang, W. Gong, J. Wang, X. Ning, Z. Wang, X. Zhao, W. Ren, Z. Zhang, J. Phys. Chem. C 115, 25241 (2011)

    Article  Google Scholar 

  16. F. Ma, H. Zhao, Russ. J. Phys. Chem. A 93, 2079 (2019)

    Article  Google Scholar 

  17. Z.M. Tian, S.L. Yuan, X.L. Wang, X.F. Zheng, S.Y. Yin, C.H. Wang, L. Liu, J. Appl. Phys. 106, 103912 (2009)

    Article  ADS  Google Scholar 

  18. A. Sahoo, D. Bhattacharya, M. Das, P. Mandal, Nanotechnology 33, 305702 (2022)

    Article  ADS  Google Scholar 

  19. C. M. Raghavan, J. W. Kim, J.-W. Kim and S. S. Kim, Mater. Res. Bull. 70, 279 (2015). 15, 2050020 (2020)

  20. J.H. Miao, T.-T. Fang, H.-Y. Chung, C.-W. Yang, J. Am. Ceram. Soc. 92, 2762 (2009)

    Article  Google Scholar 

  21. E.M.M. Ibrahim, G. Farghal, M.M. Khalaf, H.M.A. El-Lateef, NANO 15, 2050020 (2020)

    Article  Google Scholar 

  22. G. Wang, S. Nie, J. Sun, S. Wang, Q. Deng, J. Mater. Sci.: Mater. Electron. 27, 9417 (2016)

    Google Scholar 

  23. D.P. Dutta, C. Sudakar, P.S.V. Mocherla, B.P. Mandal, O.D. Jayakumar, A.K. Tyagi, Mater. Chem. Phys. 135, 998 (2012)

    Article  Google Scholar 

  24. D.P. Dutta, A.K. Tyagi, AIP Conf. Proc. 1512, 182 (2013)

    Article  ADS  Google Scholar 

  25. S. Ameer, K. Jindal, M. Tomar, P.K. Jha, V. Gupta, J. Magn. Magn. Mater. 509, 166893 (2020)

    Article  Google Scholar 

  26. Y.A. Tserkovnikov, Teor. Mat. Fiz. 7, 250 (1971)

    Article  Google Scholar 

  27. J.M. Wesselinowa, A.T. Apostolov, J. Phys.: Condens. Matter 5, 3555 (1993)

    ADS  Google Scholar 

  28. R. Blinc, B. Zeks, Soft Modes in Ferroelectrics and Antferroelectrics (North-Holland, Amsterdam, 1974)

    Google Scholar 

  29. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics, p. 158 (in Russian) (Nauka, Moscow, 1973)

  30. J.M. Wesselinowa, I. Apostolova, J. Appl. Phys. 103, 073910 (2008)

    Article  ADS  Google Scholar 

  31. H. Yang, J. Dai, L. Wang, Y. Lin, F. Wang, P. Kang, Sci. Reports 7, 768 (2017)

    ADS  Google Scholar 

  32. Z.V. Pchelkina, S.V. Streltsov, Phys. Rev. B 88, 054424 (2013)

    Article  ADS  Google Scholar 

  33. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    MATH  Google Scholar 

  34. S.A.N.H. Lavasani, O. Mirzaee, H. Shokrollahi, A.K. Moghadam, M. Salami, Ceram. Int. 43, 12120 (2017)

    Article  Google Scholar 

  35. J.M. Wesselinowa, J. Magn. Magn. Mater. 322, 234 (2010)

    Article  ADS  Google Scholar 

  36. J. Zhao, T. Liu, Y. Xua, Y. Hea, W. Chen, Mater. Chem. Phys. 128, 388 (2011)

    Article  Google Scholar 

  37. M. Liu, H. Yang, Y. Lin, Y. Yang, J. Mater. Sc.: Mater. in Electr. 25, 4949 (2014)

    Google Scholar 

  38. X. Yuan, L. Shi, J. Zhao, S. Zhou, J. Guo, Scripta Mater. 146, 55 (2018)

    Article  Google Scholar 

  39. M. Pooladi, H. Shokrollahi, S.A.N.H. Lavasani, H. Yang, Mater. Chem. Phys. 229, 39 (2019)

    Article  Google Scholar 

  40. K. Wang, X. Xu, L. Lu, A. Li, X. Han, Y. Wu, J. Miao, Y. Jiang, Chem. Phys. Lett. 715, 129 (2019)

    Article  ADS  Google Scholar 

  41. S. Huang, Y. Qiu, S.L. Yuan, Mater. Lett. 160, 323 (2015)

  42. Q.J. Ruan, W.D. Zhang, J. Phys. Chem. C 113, 4168 (2009)

Download references

Acknowledgements

One of us A.T.A. acknowledges financial support from the Center for Research and Design of the Sofia University of Architecture, Civil Engineering and Geodesy (contract number BN-271/23).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Julia M. Wesselinowa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apostolova, I.N., Apostolov, A.T. & Wesselinowa, J.M. Size and doping effects on the magnetic and electric properties of Bi\(_2\)Fe\(_4\)O\(_9\) nanoparticles. Eur. Phys. J. B 96, 77 (2023). https://doi.org/10.1140/epjb/s10051-023-00550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00550-x

Navigation