Skip to main content
Log in

Exploring the electronic properties of shallow donor impurities in modified ∩-shaped potential: effects of applied electric field, parabolicity, compositions, and thickness

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we employed numerical modeling to investigate the influence of crucial parameters, namely electric field, confinement parabolicity, compositions, and structure parameters, on the electron probability, impurity polarizability, diamagnetic susceptibility, and ionization energy of hydrogenic donor impurities within a modified ∩-shaped potential. The Schrödinger equation is solved using the finite element approach within the framework of the effective mass theory to analyze the resulting electronic properties. Our results demonstrate a significant impact of these factors on both electrons and impurities, with the ability to fine-tune these properties through parameter adjustments. These findings hold significant implications for the advancement of precise and efficient III-nitride-based optoelectronic devices, including solar cells, photodetectors, and lasers.

Graphical abstract

Effect of Applied Vertical Electric Field on Electron Probability Density in Inverted Parabolic Quantum Well with Varying Degrees of Confinement

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data pertaining to the topic has been thoroughly included and described within the text of this article. Hence, there is no need for a separate data deposition.]

References

  1. K.Y. Cheong, Two-Dimensional Nanostructures for Energy-Related Applications (CRC Press, Boca Raton, 2017)

    Book  Google Scholar 

  2. A. Jasik et al., The influence of the growth rate and V/III ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods. J. Cryst. Growth 311(19), 4423–4432 (2009). https://doi.org/10.1016/j.jcrysgro.2009.07.032

    Article  ADS  Google Scholar 

  3. C. Abbas et al., Spin relaxation of indirect excitons in asymmetric coupled quantum wells. Superlattices Microstruct. 122, 643–649 (2018)

    Article  ADS  Google Scholar 

  4. A.R. Adams, Strained-layer quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 17(5), 1364–1373 (2011). https://doi.org/10.1109/JSTQE.2011.2108995

    Article  ADS  Google Scholar 

  5. D. Atkinson, G. Parry, E.J. Austin, Modelling of electroabsorption in coupled quantum wells with applications to low voltage optical modulation. Semicond. Sci. Technol. 5(6), 516 (1990)

    Article  ADS  Google Scholar 

  6. P.A. Belov, Energy spectrum of excitons in square quantum wells. Phys. E Low-Dimens. Syst. Nanostruct. 112, 96–108 (2019)

    Article  ADS  Google Scholar 

  7. W.P. Hong, A. Zrenner, O.H. Kim, J. Harbison, L. Florez, F. Derosa, Characteristics of AlGaAs/GaAs quantum-well delta-doped channel FET (QUADFET). IEEE Trans. Electron Devices 37(8), 1924–1926 (1990)

    Article  ADS  Google Scholar 

  8. H. Daembkes, G. Weimann, Multiple quantum well AlGaAs/GaAs field-effect transistor structures for power applications. Appl. Phys. Lett. 52(17), 1404–1406 (1988)

    Article  ADS  Google Scholar 

  9. P.P. Ruden, M. Shur, A.I. Akinwande, J.C. Nohava, D.E. Grider, J. Baek, AlGaAs/InGaAs/GaAs quantum well doped channel heterostructure field effect transistors. IEEE Trans. Electron Devices 37(10), 2171–2175 (1990)

    Article  ADS  Google Scholar 

  10. Y. Alaskar et al., Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer. J. Cryst. Growth 425, 268–273 (2015)

    Article  ADS  Google Scholar 

  11. M.H. Crawford, J. Han, M.A. Banas, S.M. Myers, G.A. Petersen, J.J. Figiel, Optical spectroscopy of Ingan epilayers in the low indium composition regime. MRS Online Proc. Libr. OPL 595, F99W11.41 (1999). https://doi.org/10.1557/PROC-595-F99W11.41

  12. S.Y. Karpov, Carrier localization in InGaN by composition fluctuations: implication to the “green gap.” Photonics Res. 5(2), A7–A12 (2017)

    Article  Google Scholar 

  13. M. Beeler, E. Trichas, E. Monroy, III-Nitride semiconductors for intersubband optoelectronics: a review. Semicond. Sci. Technol. 28(7), 074022 (2013)

    Article  ADS  Google Scholar 

  14. M.O. Manasreh (ed.), III-nitride semiconductors: electrical, structural and defects properties (2000)

  15. M. Kuzuhara, H. Tokuda, Low-loss and high-voltage III-nitride transistors for power switching applications. IEEE Trans. Electron Devices 62(2), 405–413 (2015). https://doi.org/10.1109/TED.2014.2359055

    Article  ADS  Google Scholar 

  16. M. Razeghi, III-nitride optoelectronic devices: from ultraviolet toward terahertz. IEEE Photonics J. 3(2), 263–267 (2011)

    Article  ADS  Google Scholar 

  17. E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, M.E. Mora-Ramos, C.A. Duque, Donor impurity states and related optical responses in triangular quantum dots under applied electric field. Superlattices Microstruct. 73, 171–184 (2014)

    Article  ADS  Google Scholar 

  18. E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, The diamagnetic susceptibilities of donors in quantum wells with anisotropic effective mass. Superlattices Microstruct. 46(6), 817–822 (2009)

    Article  ADS  Google Scholar 

  19. E. Kilicarslan, S. Sakiroglu, M. Koksal, H. Sari, I. Sokmen, The effects of the magnetic field and dielectric screening on the diamagnetic susceptibility of a donor in a quantum well with anisotropic effective mass. Phys. E Low-Dimens. Syst. Nanostruct. 42(5), 1531–1535 (2010)

    Article  ADS  Google Scholar 

  20. A.J. Peter, Diamagnetic susceptibility of a laser dressed donor in a quantum well. Superlattices Microstruct. 47(3), 442–451 (2010)

    Article  ADS  Google Scholar 

  21. S. Rajashabala, K. Navaneethakrishnan, Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well. Superlattices Microstruct. 43(3), 247–261 (2008)

    Article  ADS  Google Scholar 

  22. B. Chouchen, M.H. Gazzah, A. Bajahzar, H. Belmabrouk, Numerical modeling of InGaN/GaN pin solar cells under temperature and hydrostatic pressure effects. AIP Adv. 9(4), 045313 (2019)

    Article  ADS  Google Scholar 

  23. B. Chouchen, M.H. Gazzah, A. Bajahzar, H. Belmabrouk, Numerical modeling of the electronic and electrical characteristics of InGaN/GaN-MQW solar cells. Materials 12(8), 1241 (2019)

    Article  ADS  Google Scholar 

  24. R. En-nadir, H. El Ghazi, A. Jorio, I. Zorkani, Inter and intra band impurity-related absorption in (In, Ga) N/GaN QW under composition, size and impurity effects, in MATEC Web of Conferences, EDP Sciences (2020)

  25. İ Karabulut, H. Şafak, M. Tomak, Intersubband resonant enhancement of the nonlinear optical properties in compositionally asymmetric and interdiffused quantum wells. J. Appl. Phys. 103(10), 103116 (2008). https://doi.org/10.1063/1.2937189

    Article  ADS  Google Scholar 

  26. I. Maouhoubi, R. En-nadir, K. El bekkari, I. Zorkani, A. Ouazzani Tayebi Hassani, A. Jorio, Effects of applied magnetic field and pressure on the diamagnetic susceptibility and binding energy of donor impurity in GaAs quantum dot considering the non-parabolicity model’s influence. Philos. Mag. 0(0), 1–18 (2022). https://doi.org/10.1080/14786435.2022.2141469

    Article  Google Scholar 

  27. I. Maouhoubi, R. En-nadir, I. Zorkani, A.O.T. Hassani, A. Jorio, The effects of the dielectric screening, temperature, magnetic field, and the structure dimension on the diamagnetic susceptibility and the binding energy of a donor-impurity in quantum disk. Phys. B Condens. Matter 646, 414371 (2022)

  28. M. Solaimani, Binding energy and diamagnetic susceptibility of donor impurities in quantum dots with different geometries and potentials. Mater. Sci. Eng. B 262, 114694 (2020)

    Article  Google Scholar 

  29. E. Iqraoun, A. Sali, K. El-Bakkari, M.E. Mora-Ramos, C.A. Duque, Binding energy, polarizability, and diamagnetic response of shallow donor impurity in zinc blende GaN quantum dots. Micro Nanostruct. 163, 107142 (2022). https://doi.org/10.1016/j.spmi.2021.107142

    Article  Google Scholar 

  30. A.L. Morales, N. Raigoza, E. Reyes-Gómez, J.M. Osorio-Guillén, C.A. Duque, Impurity-related polarizability and photoionization-cross section in GaAs–Ga1−xAlxAs double quantum wells under electric fields and hydrostatic pressure. Superlattices Microstruct. 45(6), 590–597 (2009). https://doi.org/10.1016/j.spmi.2009.03.001

    Article  ADS  Google Scholar 

  31. R. En-Nadir, H. El Ghazi, A. Jorio, I. Zorkani, Ground-state shallow-donor binding energy in (In, Ga) N/GaN double QWs under temperature, size, and the impurity position effects. J. Model. Simul. Mater. 4(1), 1–6 (2021)

    Article  Google Scholar 

  32. W. Que, Excitons in quantum dots with parabolic confinement. Phys. Rev. B 45(19), 11036–11041 (1992). https://doi.org/10.1103/PhysRevB.45.11036

    Article  ADS  Google Scholar 

  33. H. El Ghazi, A. Jorio, I. Zorkani, Impurity binding energy of lowest-excited state in (In, Ga) N-GaN spherical QD under electric field effect. Phys. B Condens. Matter 426, 155–157 (2013)

    Article  ADS  Google Scholar 

  34. R. En-nadir, H. El-ghazi, Theoretical study of ISB conduction optical absorption and impurity binding energy associated with lowest excited states in QW with a new modulated potential. J. Theor. Appl. Phys. (2023). https://doi.org/10.30495/jtap.172317

    Article  Google Scholar 

  35. R. En-nadir, H. El Ghazi, W. Belaid, A. Jorio, I. Zorkani, Intraconduction band-related optical absorption in coupled (In, Ga)N/GaN double parabolic quantum wells under temperature, coupling and composition effects. Results Opt. 5, 100154 (2021). https://doi.org/10.1016/j.rio.2021.100154

    Article  Google Scholar 

  36. H. Belmabrouk et al., Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors. Optik 207, 163883 (2020)

    Article  ADS  Google Scholar 

  37. H. ElGhazi, R. En-nadir, H. Abboudi, F. Jabouti, A. Jorio, I. Zorkani, Two-dimensional electron gas modeling in strained InN/GaN hetero-interface under pressure and impurity effects. Phys. B Condens. Matter 582, 411951 (2020). https://doi.org/10.1016/j.physb.2019.411951

    Article  Google Scholar 

  38. R. En-nadir et al., The electric and magnetic field effects on the optical absorption in double QWs with squared, U-shaped and V-shaped confinement potentials. Philos. Mag. 0(0), 1–14 (2022). https://doi.org/10.1080/14786435.2022.2145027

    Article  Google Scholar 

  39. V. Delgado, Quantum probability distribution of arrival times and probability current density. Phys. Rev. A 59(2), 1010–1020 (1999). https://doi.org/10.1103/PhysRevA.59.1010

    Article  ADS  Google Scholar 

  40. H. El Ghazi, A. JohnPeter, Impurity-related binding energy in strained (In, Ga)N asymmetric coupled QWs under strong built-in electric field. Solid State Commun. 201, 5–8 (2015). https://doi.org/10.1016/j.ssc.2014.09.024

    Article  ADS  Google Scholar 

  41. P.S. Kalpana, K. Jayakumar, Impurity states and the diamagnetic susceptibility of a donor in a GaAs/AlxGa1–x As triangular quantum well under hydrostatic pressure. J. Phys. Chem. Solids 110, 364–369 (2017). https://doi.org/10.1016/j.jpcs.2017.06.031

    Article  ADS  Google Scholar 

  42. S.Y. López, N. Porras-Montenegro, C.A. Duque, Binding energy and density of shallow impurity states in GaAs–(Ga, Al) As quantum wells: effects of an applied hydrostatic stress. Semicond. Sci. Technol. 18(7), 718 (2003)

    Article  ADS  Google Scholar 

  43. W. Belaid, H. El Ghazi, I. Zorkani, A. Jorio, Pressure-related binding energy in (In, Ga) N/GaN double quantum wells under internal composition effects. Solid State Commun. 327, 114193 (2021)

    Article  Google Scholar 

  44. J.A. Brum, C. Priester, G. Allan, Electric field dependence of the binding energy of shallow donors in GaAs-Ga1–xAlx As quantum wells. Phys. Rev. B 32(4), 2378–2381 (1985). https://doi.org/10.1103/PhysRevB.32.2378

    Article  ADS  Google Scholar 

  45. Z. Xiao, J. Zhu, F. He, Effect of the parabolic potential on the binding energy of a hydrogenic impurity in a spherical quantum dot. Superlattices Microstruct. 19(2), 137–149 (1996). https://doi.org/10.1006/spmi.1996.0017

    Article  ADS  Google Scholar 

  46. G. Rezaei, N.A. Doostimotlagh, External electric field, hydrostatic pressure and conduction band non-parabolicity effects on the binding energy and the diamagnetic susceptibility of a hydrogenic impurity quantum dot. Phys. E Low-Dimens. Syst. Nanostruct. 44(4), 833–838 (2012)

    Article  ADS  Google Scholar 

  47. A.L. Morales, A. Montes, S.Y. López, C.A. Duque, Simultaneous effects of hydrostatic stress and an electric field on donors in a GaAs-(Ga, Al)As quantum well. J. Phys. Condens. Matter 14(5), 987 (2002). https://doi.org/10.1088/0953-8984/14/5/304

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude and heartfelt appreciation to our esteemed collaborators from Hungary and Turkey. Their invaluable contribution and insightful discussions have been instrumental in enhancing the quality of this work. Without their support, this project would not have been possible.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, RE, MT, SEZ and WB; resources, RE and HE; writing—original draft preparation, RE and HE; methodology, RE and HE; writing—review and editing, LI and IZ; supervision, HE and AJ; project administration, HE and IZ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Redouane En-nadir.

Ethics declarations

Institutional review board statement

Not applicable.

Informed consent statement

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

En-nadir, R., El Ghazi, H., Tihtih, M. et al. Exploring the electronic properties of shallow donor impurities in modified ∩-shaped potential: effects of applied electric field, parabolicity, compositions, and thickness. Eur. Phys. J. B 96, 78 (2023). https://doi.org/10.1140/epjb/s10051-023-00539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00539-6

Navigation