Skip to main content
Log in

Electronic structure and microscopic model of Cu\(_{2}\)(SeO\(_{3}\))F\(_{2}\): a 2-D AFM ladder compound

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present first-principles density functional theory (DFT) calculations within the generalized gradient approximation for the exchange-correlation functional to gain microscopic understanding, electronic and magnetic properties of Cu\(_{2}\)(SeO\(_{3}\))F\(_{2}\). We discuss explicitly the electronic and magnetic properties by means of density of states, band structure, magnetic moments at different sites, nature of the exchange paths and estimation of magnetic exchange interactions etc. Focusing on the calculated magnetic interactions and electronic structure of Cu\(_{2}\)(SeO\(_{3}\))F\(_{2}\) it can be classified as weakly coupled two-leg spin S=1/2 ladder system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: First of all, this is a purely computational work, and all the data (processed) related to this work is already provided in the form of figures and tables within this article. Only raw data are kept with the authors. Because of this, we chose this option of no data/data will not be deposited while submitting the manuscript.

References

  1. Y. Sasago, M. Hase, K. Uchinokura, M. Tokunaga, N. Miura, Phys. Rev. B 52, 3533 (1995)

    Article  ADS  Google Scholar 

  2. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Bethe, Z. Phys. 71, 205 (1931)

    Article  ADS  Google Scholar 

  4. R.M. Morra, W.J.L. Buyers, R.L. Armstrong, K. Hirakawa, Phys. Rev. B 38, 543 (1988)

    Article  ADS  Google Scholar 

  5. E. Dagotto, T.M. Rice, Science 271, 618 (1996)

    Article  ADS  Google Scholar 

  6. M. Wang, M. Yi, S. Jin, H. Jiang, Y. Song, H. Luo, A.D. Christianson, C. de la Cruz, E. Bourret-Courchesne, D.-X. Yao, D.H. Lee, R.J. Birgeneau, Phys. Rev. B 94, 041111(R) (2016)

    Article  ADS  Google Scholar 

  7. M. Nishi, O. Fujita, J. Akimitsu, Phys. Rev. B 50, 6508 (1994)

    Article  ADS  Google Scholar 

  8. J.W. Bray, L.V. Interrante, I.S. Jacobs, J.C. Bonner, Extended Linear Chain Compounds, vol. 3 (Plenum, New York, 1983), p. 353

  9. M. Azuma, Z. Hiroi, M. Takano, K. Ishida, Y. Kitaoka, Phys. Rev. Lett. 73, 3463 (1994)

    Article  ADS  Google Scholar 

  10. D. Schmidiger, KYu. Povarov, S. Galeski, N. Reynolds, R. Bewley, T. Guidi, J. Ollivier, A. Zheludev, Phys. Rev. Lett. 116, 257203 (2016)

    Article  ADS  Google Scholar 

  11. T.M. Rice, S. Gopalan, M. Sigrist, Europhys. Lett. 23, 445 (1993)

    Article  ADS  Google Scholar 

  12. S. Gopalan, T.M. Rice, M. Sigrist, Phys. Rev. B 49, 8901 (1994)

    Article  ADS  Google Scholar 

  13. J.G. Bednorz, K.A. Müller, Zeitschrift für Physik B. 64(2), 189–193 (1986)

    Article  ADS  Google Scholar 

  14. O.S. Volkova, L.V. Shvanskaya, E.A. Ovchenkov, E.A. Zvereva, A.S. Volkov, D.A. Chareev, K. Molla, B. Rahaman, T. Saha-Dasgupta, A.N. Vasiliev, Inorg. Chem. 55, 10692 (2016)

    Article  Google Scholar 

  15. K.V. Zakharov, E.A. Zvereva, M.M. Markina, M.I. Stratan, E.S. Kuznetsova, S.F. Dunaev, P.S. Berdonosov, V.A. Dolgikh, A.V. Olenev, S.A. Klimin, L.S. Mazaev, M.A. Kashchenko, Md.A. Ahmed, A. Banerjee, S. Bandyopadhyay, A. Iqbal, B. Rahaman, T. Saha-Dasgupta, A.N. Vasiliev, Phys. Rev. B 94, 054401 (2016)

    Article  ADS  Google Scholar 

  16. A.N. Vasiliev, O.S. Volkova, E.A. Zvereva, A.V. Koshelev, V.S. Urusov, D.A. Chareev, V.I. Petkov, M.V. Sukhanov, B. Rahaman, T. Saha-Dasgupta, Phys. Rev. B. 91, 144406 (2015)

    Article  ADS  Google Scholar 

  17. P.S. Berdonosov, E.S. Kuznetsova, V.A. Dolgikh, A.V. Sobolev, I.A. Presniakov, A.V. Olenev, B. Rahaman, T. Saha-Dasgupta, K.V. Zakharov, E.A. Zvereva, O.S. Volkova, A.N. Vasiliev, Inorg. Chem. 53, 5830 (2014)

    Article  Google Scholar 

  18. Eleni Mitoudi-Vagourdi, Wassilios Papawassiliou, Silvia Müllner, Aleksander Jaworski, Andrew J. Pell, Peter Lemmens, Reinhard K. Kremer, Mats Johnsson, Inorg. Chem. 57(8), 4640–4648 (2018)

    Article  Google Scholar 

  19. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  22. O.K. Andersen, T. Saha-Dasgupta, Phys. Rev. B 62, R162 (2000)

    Article  Google Scholar 

  23. O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984)

  24. H.J. Xiang, E.J. Kan, S.-H. Wei, M.-H. Whangbo, X.G. Gong, Phys. Rev. B 84, 224429 (2011)

    Article  ADS  Google Scholar 

  25. Vladimir I. Anisimov, Jan Zaanen, Ole K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  26. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  27. Anatoly Koshelev, Elena Zvereva, Larisa Shvanskaya, Olga Volkova, Mahmoud Abdel-Hafiez, Andrey Gippius, Sergey Zhurenko, Alexey Tkachev, Dmitry Chareev, Norbert Büttgen, Martina Schädler, Asif Iqbal, Badiur Rahaman, Tanusri Saha-Dasgupta, Alexander Vasiliev, J. Phys. Chem. C 123(29), 17933–17942 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the authority of Aliah University for purchase and installation super-computer in the Department of Physics. We also heartily acknowledge the support of the WBDST through Grants No. 463 (Sanc.) / ST/ P / S & T / 16 G-5 / 2018 dated 14.03.2019.

Author information

Authors and Affiliations

Authors

Contributions

BR is responsible for direction, data analysis and wrote the manuscript. AI has performed the first principle calculation using LMTO, VASP and magnetic properties of this system using VASP. AI has also performed the structural analysis.

Corresponding author

Correspondence to Badiur Rahaman.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Rahaman, B. Electronic structure and microscopic model of Cu\(_{2}\)(SeO\(_{3}\))F\(_{2}\): a 2-D AFM ladder compound. Eur. Phys. J. B 96, 46 (2023). https://doi.org/10.1140/epjb/s10051-023-00514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00514-1

Navigation