Skip to main content
Log in

Characterizing the delocalized–localized Anderson phase transition based on the system’s response to boundary conditions

  • Regular Article - Statistical and Nonlinear
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A new characterization of the Anderson phase transition, based on the response of the system to the boundary conditions is introduced. We change the boundary conditions from periodic to antiperiodic and look for its effects on the eigenstate of the system. To characterize these effects, we use the overlap of the states. In particular, we numerically calculate the overlap between the ground state of the system with periodic and antiperiodic boundary conditions in one-dimensional models with delocalized–localized phase transitions. We observe that the overlap is close to one in the localized phase, and it gets appreciably smaller in the delocalized phase. In addition, in models with mobility edges, we calculate the overlaps between single-particle eigenstate with periodic and antiperiodic boundary conditions to characterize the entire spectrum. By this single-particle overlap, we can locate the mobility edges between delocalized and localized states.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958). https://doi.org/10.1103/PhysRev.109.1492

    Article  ADS  Google Scholar 

  2. A. Lagendijk, B. Van Tiggelen, D.S. Wiersma, Fifty years of Anderson localization. Phys. Today 62(8), 24–29 (2009)

    Article  Google Scholar 

  3. G. Semeghini et al., Measurement of the mobility edge for 3d Anderson localization. Nat. Phys. 11(7), 554–559 (2015)

    Article  Google Scholar 

  4. E.N. Economou, M.H. Cohen, Existence of mobility edges in Anderson’s model for random lattices. Phys. Rev. B 5, 2931–2948 (1972). https://doi.org/10.1103/PhysRevB.5.2931

    Article  ADS  Google Scholar 

  5. F. Evers, A.D. Mirlin, Anderson transitions. Rev. Mod. Phys. 80, 1355–1417 (2008). https://doi.org/10.1103/RevModPhys.80.1355

    Article  ADS  Google Scholar 

  6. P. Markos, Numerical analysis of the anderson localization. arXiv preprint cond-mat/0609580 (2006)

  7. P. Markos, B. Kramer, Statistical properties of the Anderson transition numerical results. Philos. Mag. B 68(3), 357–379 (1993). https://doi.org/10.1080/13642819308215292

    Article  ADS  Google Scholar 

  8. F.M. Izrailev, A.A. Krokhin, Localization and the mobility edge in one-dimensional potentials with correlated disorder. Phys. Rev. Lett. 82, 4062–4065 (1999). https://doi.org/10.1103/PhysRevLett.82.4062

    Article  ADS  Google Scholar 

  9. A.D. Mirlin, Y.V. Fyodorov, F.-M. Dittes, J. Quezada, T.H. Seligman, Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices. Phys. Rev. E 54(4), 3221 (1996)

    Article  ADS  Google Scholar 

  10. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  MATH  ADS  Google Scholar 

  11. J.M. Raimond, M. Brune, S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001). https://doi.org/10.1103/RevModPhys.73.565

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. E. Schrödinger, Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31(4), 555–563 (1935). https://doi.org/10.1017/S0305004100013554

    Article  MATH  ADS  Google Scholar 

  13. A. Osterloh, L. Amico, G. Falci, R. Fazio, Scaling of entanglement close to a quantum phase transition. Nature 416(6881), 608–610 (2002). https://doi.org/10.1038/416608a

    Article  ADS  Google Scholar 

  14. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008). https://doi.org/10.1103/RevModPhys.80.517

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. B.I. Shklovskii, B. Shapiro, B.R. Sears, P. Lambrianides, H.B. Shore, Statistics of spectra of disordered systems near the metal-insulator transition. Phys. Rev. B 47, 11487–11490 (1993). https://doi.org/10.1103/PhysRevB.47.11487

    Article  ADS  Google Scholar 

  17. S. Aubry, G. André, Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc 3(133), 18 (1980)

    MathSciNet  MATH  Google Scholar 

  18. X. Deng, S. Ray, S. Sinha, G.V. Shlyapnikov, L. Santos, One-dimensional quasicrystals with power-law hopping. Phys. Rev. Lett. 123, 025301 (2019). https://doi.org/10.1103/PhysRevLett.123.025301

    Article  ADS  Google Scholar 

  19. V. Oganesyan, D.A. Huse, Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007). https://doi.org/10.1103/PhysRevB.75.155111

    Article  ADS  Google Scholar 

  20. Y.Y. Atas, E. Bogomolny, O. Giraud, G. Roux, Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett. 110, 084101 (2013). https://doi.org/10.1103/PhysRevLett.110.084101

    Article  ADS  Google Scholar 

  21. N. Roy, A. Sharma, Entanglement contour perspective for “strong area-law violation’’ in a disordered long-range hopping model. Phys. Rev. B 97, 125116 (2018). https://doi.org/10.1103/PhysRevB.97.125116

    Article  ADS  Google Scholar 

  22. P. Buonsante, A. Vezzani, Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model. Phys. Rev. Lett. 98, 110601 (2007). https://doi.org/10.1103/PhysRevLett.98.110601

    Article  ADS  Google Scholar 

  23. S. Chen, L. Wang, Y. Hao, Y. Wang, Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition. Phys. Rev. A 77, 032111 (2008). https://doi.org/10.1103/PhysRevA.77.032111

    Article  ADS  Google Scholar 

  24. M.-F. Yang, Ground-state fidelity in one-dimensional gapless models. Phys. Rev. B 76, 180403 (2007). https://doi.org/10.1103/PhysRevB.76.180403

    Article  ADS  Google Scholar 

  25. D. Rossini, E. Vicari, Ground-state fidelity at first-order quantum transitions. Phys. Rev. E 98, 062137 (2018). https://doi.org/10.1103/PhysRevE.98.062137

    Article  ADS  Google Scholar 

  26. J.-H. Zhao, H.-Q. Zhou, Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B 80, 014403 (2009). https://doi.org/10.1103/PhysRevB.80.014403

    Article  ADS  Google Scholar 

  27. M. Lacki, B. Damski, J. Zakrzewski, Numerical studies of ground-state fidelity of the Bose-Hubbard model. Phys. Rev. A 89, 033625 (2014). https://doi.org/10.1103/PhysRevA.89.033625

    Article  ADS  Google Scholar 

  28. P.W. Anderson, Infrared catastrophe in fermi gases with local scattering potentials. Phys. Rev. Lett. 18, 1049–1051 (1967). https://doi.org/10.1103/PhysRevLett.18.1049

    Article  ADS  Google Scholar 

  29. R. Vasseur, J.E. Moore, Multifractal orthogonality catastrophe in one-dimensional random quantum critical points. Phys. Rev. B 92, 054203 (2015). https://doi.org/10.1103/PhysRevB.92.054203

    Article  ADS  Google Scholar 

  30. D.-L. Deng, J.H. Pixley, X. Li, S. Das Sarma, Exponential orthogonality catastrophe in single-particle and many-body localized systems. Phys. Rev. B 92, 220201 (2015). https://doi.org/10.1103/PhysRevB.92.220201

    Article  ADS  Google Scholar 

  31. F. Cosco et al., Statistics of orthogonality catastrophe events in localised disordered lattices. New J. Phys. 20(7), 073041 (2018). https://doi.org/10.1088/1367-2630/aad10b

    Article  ADS  Google Scholar 

  32. F. Tonielli, R. Fazio, S. Diehl, J. Marino, Orthogonality catastrophe in dissipative quantum many-body systems. Phys. Rev. Lett. 122, 040604 (2019). https://doi.org/10.1103/PhysRevLett.122.040604

    Article  ADS  Google Scholar 

  33. G.C. Levine, Entanglement entropy in a boundary impurity model. Phys. Rev. Lett. 93, 266402 (2004). https://doi.org/10.1103/PhysRevLett.93.266402

    Article  ADS  Google Scholar 

  34. I. Peschel, Entanglement entropy with interface defects. J. Phys. A 38(20), 4327–4335 (2005). https://doi.org/10.1088/0305-4470/38/20/002

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. J.T. Edwards, D.J. Thouless, Numerical studies of localization in disordered systems. J. Phys. C 5(8), 807–820 (1972). https://doi.org/10.1088/0022-3719/5/8/007

    Article  ADS  Google Scholar 

  36. P. Mohammad, A. Montakhab, Sensitivity of the entanglement spectrum to boundary conditions as a characterization of the phase transition from delocalization to localization. Phys. Rev. B 96, 045123 (2017). https://doi.org/10.1103/PhysRevB.96.045123

    Article  ADS  Google Scholar 

  37. M. Pouranvari, S.-F. Liou, Characterizing many-body localization via state sensitivity to boundary conditions. Phys. Rev. B 103, 035136 (2021). https://doi.org/10.1103/PhysRevB.103.035136

    Article  ADS  Google Scholar 

  38. K. Hashimoto et al., Quantum hall transition in real space: from localized to extended states. Phys. Rev. Lett. 101, 256802 (2008). https://doi.org/10.1103/PhysRevLett.101.256802

    Article  ADS  Google Scholar 

  39. D.H. Dunlap, H.-L. Wu, P.W. Phillips, Absence of localization in a random-dimer model. Phys. Rev. Lett. 65, 88–91 (1990). https://doi.org/10.1103/PhysRevLett.65.88

    Article  ADS  Google Scholar 

  40. A. Bovier, Perturbation theory for the random dimer model. J. Phys. A 25(5), 1021–1029 (1992). https://doi.org/10.1088/0305-4470/25/5/011

    Article  MATH  ADS  Google Scholar 

  41. T. Sedrakyan, Localization-delocalization transition in a presence of correlated disorder: the random dimer model. Phys. Rev. B 69, 085109 (2004). https://doi.org/10.1103/PhysRevB.69.085109

    Article  ADS  Google Scholar 

  42. P.K. Datta, D. Giri, K. Kundu, Nature of states in a random-dimer model: Bandwidth-scaling analysis. Phys. Rev. B 48, 16347–16356 (1993). https://doi.org/10.1103/PhysRevB.48.16347

    Article  ADS  Google Scholar 

  43. R. Farchioni, G. Grosso, Electronic transport for random dimer-trimer model Hamiltonians. Phys. Rev. B 56, 1170–1174 (1997). https://doi.org/10.1103/PhysRevB.56.1170

    Article  ADS  Google Scholar 

  44. M. Pouranvari, J. Abouie, Entanglement conductance as a characterization of a delocalized-localized phase transition in free fermion models. Phys. Rev. B 100, 195109 (2019). https://doi.org/10.1103/PhysRevB.100.195109

    Article  ADS  Google Scholar 

  45. S. Ganeshan, J.H. Pixley, S. Das Sarma, Nearest neighbor tight binding models with an exact mobility edge in one dimension. Phys. Rev. Lett. 114, 146601 (2015). https://doi.org/10.1103/PhysRevLett.114.146601

  46. G.A. Domínguez-Castro, R. Paredes, The aubry–andré model as a hobbyhorse for understanding the localization phenomenon. Eur. J. Phys. 40(4), 045403 (2019). https://doi.org/10.1088/1361-6404/ab1670

  47. T. Cookmeyer, J. Motruk, J.E. Moore, Critical properties of the ground-state localization-delocalization transition in the many-particle aubry-andré model. Phys. Rev. B 101, 174203 (2020). https://doi.org/10.1103/PhysRevB.101.174203

    Article  ADS  Google Scholar 

  48. J. Riddell, E.S. Sørensen, Out-of-time-order correlations in the quasiperiodic aubry-andré model. Phys. Rev. B 101, 024202 (2020). https://doi.org/10.1103/PhysRevB.101.024202

    Article  ADS  Google Scholar 

  49. E. Anderson et al., LAPACK users’ guide, 3rd edn. (Society for Industrial and Applied Mathematics, Philadelphia, 1999)

    Book  MATH  Google Scholar 

  50. J. Fraxanet, U. Bhattacharya, T. Grass, M. Lewenstein, A. Dauphin, Localization and multifractal properties of the long-range Kitaev chain in the presence of an aubry-andré-harper modulation. Phys. Rev. B. 2201, 05458 (2022)

    Google Scholar 

  51. J. Biddle, D.J. Priour, B. Wang, S. Das Sarma, Localization in one-dimensional lattices with non-nearest-neighbor hopping: generalized Anderson and aubry-andré models. Phys. Rev. B 83, 075105 (2011). https://doi.org/10.1103/PhysRevB.83.075105

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the High Performance Computing Center of the University of Mazandaran for providing computing resources and time.

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization, numerical calculations, and writing are made by the single author.

Corresponding author

Correspondence to Mohammad Pouranvari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouranvari, M. Characterizing the delocalized–localized Anderson phase transition based on the system’s response to boundary conditions. Eur. Phys. J. B 96, 48 (2023). https://doi.org/10.1140/epjb/s10051-023-00506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00506-1

Navigation