Skip to main content

Advertisement

Log in

A new two-dimensional MgICl Janus monolayer for optoelectronic applications

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using first-principles calculations based on density functional theory (DFT), the structural, optoelectronic, and transport properties of the MgICl Janus monolayer have been investigated. The stability is validated by the ab-initio molecular dynamics (AIMD), cohesive energy, and phonon spectrum. We found that Janus MgICl monolayer is a direct band-gap semiconductor with an energy gap of 3.35 eV (PBE) and 4.87 eV (HSE), and is energetic and dynamically stable. The dielectric matrix has been calculated within the random phase approximation (RPA). The optical-absorption coefficient is found to be very less in the visible region, and the calculated refractive index values are very near to that of water. The reflectivity is found to be less than 10% in the visible region which further increases in the UV region. The electrical conductivity of the Janus MgICl using Boltzmann transport theory, and the effective mass of electrons and holes have been calculated; the results present good electrical conductivity and small values of effective mass owing to high mobility. These theoretical investigations suggest that the Janus MgICl is a thermodynamically stable and promising material for use in the solar cells as a transparent conductor material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors' comment:...].

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.A. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  2. K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios et al., Nano Lett. 12(1), 161–166 (2012). https://doi.org/10.1021/nl203249a

    Article  ADS  Google Scholar 

  3. Y. Stehle, H.M. Meyer III., R.R. Unocic, M. Kidder, G. Polizos, P.G. Datskos, R. Jackson, S.N. Smirnov, I.V. Vlassiouk, Chem. Mater. 27(23), 8041–8047 (2015). https://doi.org/10.1021/acs.chemmater.5b03607

    Article  Google Scholar 

  4. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Adv. Opt. Mater. 2(2), 131–136 (2014). https://doi.org/10.1002/adom.201300428

    Article  Google Scholar 

  5. J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, L.-J. Li, ACS Nano 8(1), 923–930 (2014). https://doi.org/10.1021/nn405719x

    Article  Google Scholar 

  6. X. Wang, Y. Gong, G. Shi, W.L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe et al., ACS Nano 8(5), 5125–5131 (2014). https://doi.org/10.1021/nn501175k

    Article  Google Scholar 

  7. K.M. McCreary, A.T. Hanbicki, J.T. Robinson, E. Cobas, J.C. Culbertson, A.L. Friedman, G.G. Jernigan, B.T. Jonker, Adv. Funct. Mater. 24(41), 6449–6454 (2014). https://doi.org/10.1002/adfm.201401511

    Article  Google Scholar 

  8. J. Gou, Q. Zhong, S. Sheng, W. Li, P. Cheng, H. Li, L. Chen, K. Wu, 2D Mater. 3(4), Article 045005 (2016). https://doi.org/10.1088/2053-1583/3/4/045005

    Article  Google Scholar 

  9. M.E. Dávila, G. Le Lay, Sci. Rep. 6(1), 1–9 (2016). https://doi.org/10.1038/srep20714

    Article  Google Scholar 

  10. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotechnol. 10(3), 227–231 (2015). https://doi.org/10.1038/nnano.2014.325

    Article  ADS  Google Scholar 

  11. A.H. Woomer, T.W. Farnsworth, J. Hu, R.A. Wells, C.L. Donley, S.C. Warren, ACS Nano 9(9), 8869–8884 (2015). https://doi.org/10.1021/acsnano.5b02599

    Article  Google Scholar 

  12. I. Allaoui, A. Benyoussef, A. EL Kenz, Comput. Condens. Matter (2020). https://doi.org/10.1016/j.cocom.2020.e00488

    Article  Google Scholar 

  13. I. Allaoui, A. Benyoussef, A.E. Kenz, Solid State Sci. 121, 106736 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106736

    Article  Google Scholar 

  14. D.H. Fairbrother, J.G. Roberts, S. Rizzi, G.A. Somorjai, Langmuir 13(7), 2090–2096 (1997). https://doi.org/10.1021/la960680c

    Article  Google Scholar 

  15. I.T. Lima, R. Gargano, S. Guerini, E.N. Paura, New J. Chem. 43(20), 7778–7783 (2019). https://doi.org/10.1039/C9NJ01762C

    Article  Google Scholar 

  16. I.T. Lima, R. Vasconcelos, R. Gargano, E.N. Paura, New J. Chem. 44(21), 8833–8839 (2020). https://doi.org/10.1039/D0NJ01264E

    Article  Google Scholar 

  17. F. Lu, W. Wang, X. Luo, X. Xie, Y. Cheng, H. Dong, H. Liu, W.-H. Wang, Appl. Phys. Lett. 108, 132104 (2016). https://doi.org/10.1063/1.4945366

    Article  ADS  Google Scholar 

  18. S. Qian, J. Gao, G. Liu, Modern Phys. 11(5), 99–108 (2021). https://doi.org/10.12677/MP.2021.115013

    Article  Google Scholar 

  19. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi et al., ACS Nano 11(8), 8192–8198 (2017). https://doi.org/10.1021/acsnano.7b03186

    Article  Google Scholar 

  20. L. Dong, J. Lou, V.B. Shenoy, ACS Nano 11, 8242–8248 (2017). https://doi.org/10.1021/acsnano.7b03313

    Article  Google Scholar 

  21. J. Wang, H. Shu, T. Zhao, P. Liang, N. Wang, D. Cao, X. Chen, Phys. Chem. Chem. Phys. 20, 18571–18578 (2018). https://doi.org/10.1039/c8cp02612b

    Article  Google Scholar 

  22. X. Ma, X. Wu, H. Wang, Y. Wang, Mater. Chem. 6, 2295–2301 (2018). https://doi.org/10.1039/C7TA10015A

    Article  Google Scholar 

  23. M. Alam, H.S. Waheed, H. Ullah, M.W. Iqbal, Y.-H. Shin, M.J.I. Khan, H.I. Elsaeedy, R. Neffati, Phys. B 625, 413487 (2022). https://doi.org/10.1016/j.physb.2021.413487

    Article  Google Scholar 

  24. D.M. Hoat, D.K. Nguyen, D. García-Toral, V. Van On, J.F. Rivas-Silva, G.H. Cocoletzi, Phys. E. 137, 115023 (2022). https://doi.org/10.1016/j.physe.2021.115023

    Article  Google Scholar 

  25. P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys. Condens. Matter 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  26. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  27. J.D. Head, M.C. Zerner, Chem. Phys. Lett. 122, 264–270 (1985). https://doi.org/10.1016/0009-2614(85)80574-1

    Article  ADS  Google Scholar 

  28. H. Judith, S. Laurids, K. Georg, Phys. Rev. B 81, 115126 (2010). https://doi.org/10.1103/PhysRevB.81.115126

    Article  Google Scholar 

  29. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207–8215 (2003). https://doi.org/10.1063/1.1564060

    Article  ADS  Google Scholar 

  30. M. Cardona, J. Electron. Mater. 22, 27–37 (1993). https://doi.org/10.1007/BF02665721

    Article  ADS  Google Scholar 

  31. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175(1), 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  Google Scholar 

  32. A. Marini, C. Hogan, M. Grüning, D. Varsano, Comput. Phys. Commun. 180, 1392–1403 (2009). https://doi.org/10.1016/j.cpc.2009.02.003

    Article  ADS  Google Scholar 

  33. M. Talati, P.K. Jha, Phys. Rev. E 73, 011901 (2006). https://doi.org/10.1103/PhysRevE.73.011901

    Article  ADS  Google Scholar 

  34. P.K. Jha, S.P. Sanyal, Physica C 261, 259–262 (1996). https://doi.org/10.1016/0921-4534(96)00148-7

    Article  ADS  Google Scholar 

  35. H.R. Mahida, A. Patel, D. Singh, Y. Sonvane, P. B. Thakor, R. Ahuja, https://doi.org/10.1016/j.spmi.2021.107132

  36. R. John, B. Merlin, J. Phys. Chem. Solids (2017). https://doi.org/10.1016/j.jpcs.2017.06.026

    Article  Google Scholar 

  37. H.D. Bui, H.R. Jappor, N.N. Hieu, Superlattice. Microst. 125, 1–7 (2019). https://doi.org/10.1016/j.spmi.2018.10.020

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IA: visualization, methodology, writing—original draft, and writing—review and editing. MK: conceptualization, methodology, visualization, review, and formal analysis. AEK and AB: review and editing, conceptualization, and formal analysis.

Corresponding author

Correspondence to Isam Allaoui.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaoui, I., Benyoussef, A., El Kenz, A. et al. A new two-dimensional MgICl Janus monolayer for optoelectronic applications. Eur. Phys. J. B 96, 34 (2023). https://doi.org/10.1140/epjb/s10051-023-00502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00502-5

Navigation