Skip to main content
Log in

Role of spin-orbit coupling effects in rare-earth metallic tetra-borides: a first principle study

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Recent observation of magnetization plateau in rare-earth metallic tetra-borides, \(\text {RB}_{4}\), have drawn lot of attention to this class of materials. In this article, using first principle electronic structure methods (DFT) implemented in Quantum Espresso (QE), we have studied hither-to neglected strong spin-orbit coupling (SOC) effects present in these systems on the electronic structure of these system in the non-magnetic ground state. The calculations were done under GGA and GGA+SO approximations. In the electronic band structure, strong SOC effect lifts degeneracy at various symmetry points. The projected density of states consists of 3 distinct spectral peaks well below the Fermi energy and separated from the continuum density of states around the Fermi energy. The discrete peaks arise due to rare-earth \({\varvec{s}}\), rare-earth \({\varvec{p}}\) + B \({\varvec{p}}\) and B \({\varvec{p}}\) while the continuum states around the Fermi level arises due to hybridized B \({\varvec{p}}\), rare-earth \({\varvec{p}}\) and \({\varvec{d}}\) orbitals. Upon inclusion of SOC the peak arising due to rare-earth p gets split into two peaks corresponding to \({\varvec{j}}={\textbf {0.5}}\) and \({\varvec{j}}={\textbf {1.5}}\) configurations. The splitting gap (\({\varvec{\Delta }} {\varvec{E}}_{\text {gap}}\)) between \({\varvec{j}}={\textbf {0.5}}\) and \({\varvec{j}}={\textbf {1.5}}\) manifold shows power law (\({\varvec{\Delta }} {\varvec{E}}_{\text {gap}}\varvec{\propto } {\varvec{Z}}^{{\varvec{n}}}\), \({\varvec{Z}}\) is the atomic number of the rare-earth atom involved) behaviour with n =4.82. In case of \(\text {LaB}_{4}\), in the presence of SOC, spin-split \({\textbf {4}}{\varvec{f}}\) orbitals contributes to density of states at the Fermi level while the density of states at the Fermi level largely remains unaffected for all other materials under consideration.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The computational data of this manuscript will be made available on reasonable request.

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranka, Y. Zenitamin, J. Akimitsu, Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  2. K. Zhang, Y. Feng, F. Wang, Z. Yanga, J. Wang, J. Mater. Chem C 5, 11992 (2017)

    Article  Google Scholar 

  3. P. Delin, Y. Pan, Int. J. Quantum Chem. 121, 26751 (2021)

    Google Scholar 

  4. Y. Pan, S. Chen, Y. Lin, Int. J. Mod. Phys. B 31, 1750096 (2017)

    Article  ADS  Google Scholar 

  5. Y. Pan, Y.H. Lin, M. Wen, Q.N. Meng, RSC Adv. 4, 63891 (2014)

    Article  ADS  Google Scholar 

  6. Y. Pan, Y.H. Lin, J.M. Guo, M. Wen, RSC Adv. 4, 47377 (2014)

    Article  ADS  Google Scholar 

  7. Y. Pan, W.T. Zheng, K. Xu, X.M. Luo, W. Li, Y.C. Yang, RSC Adv. 4, 25093 (2014)

    Article  ADS  Google Scholar 

  8. Y. Pan, H.W. Huang, W.M. Guan, Comp. Mater. Sci 89, 19 (2014)

    Article  Google Scholar 

  9. Y.M. Goryachev, B.A. Kovenskaya, E.M. Dudnik et al., J. Struct. Chem. 16, 951 (1975)

    Article  Google Scholar 

  10. F. Frontini et al., J. Phys.: Condens. Matter 34, 34560 (2022)

    Google Scholar 

  11. S.S. Sunku, T. Kong, T. Ito, P.C. Canfield, B.S. Shastry, P. Sengupta, C. Panagopoulos, Phys. Rev. B 93, 174408 (2016)

    Article  ADS  Google Scholar 

  12. D. Brunt, G. Balakrishnan, D.A. Mayoh, M.R. Lees, D. Gorbunov, N. Quereshi, O.A. Petrenko, Sci. Rep. 8, 232 (2018)

    Article  ADS  Google Scholar 

  13. B.S. Shastry, B. Sutherland, Phys. B 108, 1069 (1981)

    Article  Google Scholar 

  14. S. Miyahara, K. Ueda, J. Phys, Condens. Matter. 15, R327 (2003)

    Article  Google Scholar 

  15. L.B. Robinson, L.N. Ferguson Jr., F. Milstein, Phys. Rev. B 3, 1025 (1971)

    Article  ADS  Google Scholar 

  16. T. Mtasumurai, D. Okuyama, T. Mouri, Y. Murakami, J. Phys. Soc. Jpn 80, 074701 (2011)

    Article  ADS  Google Scholar 

  17. Yu. Ende, Y. Pan, J. Mater. Chem. A 10, 24866 (2022)

    Article  Google Scholar 

  18. P. Delin, Y. Pan, Electrochim. Acta. 435, 141391 (2022)

    Article  Google Scholar 

  19. S. Chen, Y. Pan, Appl. Surf. Sci. 599, 154041 (2022)

    Article  Google Scholar 

  20. Y. Pan, Y. Ende, Int. J. Hydrog. Energ. 47, 27608 (2022)

    Article  Google Scholar 

  21. Y. Pan, Mat. Sci. Eng. B 281, 115746 (2022)

    Article  Google Scholar 

  22. Z.P. Yin, W.E. Pickett, Phys. Rev. B 77, 035135 (2008)

    Article  ADS  Google Scholar 

  23. S. Pradhan, A. Taraphder, Mater. Today: Proc. 4, 5532 (2017)

    Google Scholar 

  24. N. Pakhira, J. Krishna, S. Nandy, T. Maitra, A. Taraphder, arXiv:1807.05388

  25. H. Choi, A. Laref, J. Shim, S. Kwon, B. Min, J. Appl. Phys. 105, 07E107 (2009)

    Article  Google Scholar 

  26. J. Waśkowska Olsen, A. Gerward, L. Vaitheeswaran, Ganapathy Venkatakrishnan, Kanchana Svane, Natalya A. Shitsevalova, and V. Fillipov, High Pres. Res. 31, (2011)

  27. Z. Fisk, M.B. Maple, Solid State Commun. 39, 1189 (1981)

    Article  ADS  Google Scholar 

  28. G. Will, W. Schfer, Z. fur Krist. - Cryst. Mat. 144, 217 (1976)

    Article  Google Scholar 

  29. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  30. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  31. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  32. https://nisihara.wixsite.com/burai/

  33. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  34. N. Marzari, D. Vanderbilt, A. De Vita, M.C. Payne, Phys. Rev. Lett. 82, 3296 (1999)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  36. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  37. M.R. Islam, M.S. Islam, N. Ferdous, J. Comput. Electron. 18, 407 (2019)

    Article  Google Scholar 

  38. A. Jain, S.P. Ong, G. Hautier et al., APL Mater. 1(1), 011002 (2013)

    Article  ADS  Google Scholar 

  39. W.C. Martin, J. Res. Natl. Bur. Stand. A. Phys. Chem. 75A(2), 109 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank IIT, Kharagpur for providing hospitality where part of the work was done. We also thank Arghya Taraphder, Tulika Mitra, Urmimala Dey and various other colleagues for discussions, computational support and reading this manuscript. This work is partially supported by WB-DSTBT research grant no. STBT- 11012(26)/31/2019-ST SEC. One of us (NP) would like to acknowledge hospitality of IIT, Kharagpore. One of us (IS) would like to thank Bajkul Milani Mahavidyalaya (College) authority for giving me an opportunity to pursue research as a Ph. D scholar.

Author information

Authors and Affiliations

Authors

Contributions

IS did the numerical computation and analysis using free software and wrote the manuscript. NP conceived the main idea, received research grant, edited the manuscript and corresponded to the journal.

Corresponding author

Correspondence to Nandan Pakhira.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sk, I., Pakhira, N. Role of spin-orbit coupling effects in rare-earth metallic tetra-borides: a first principle study. Eur. Phys. J. B 96, 29 (2023). https://doi.org/10.1140/epjb/s10051-023-00500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00500-7

Navigation