Skip to main content
Log in

Puzzle in inverse problems: Tsallis noise and Tsallis norm

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Inverse problems are challenging in several ways, and we cite the non-linearity and the presence of non-Gaussian noise. Least squared is the standard method to construct a equivalent functional for optimization, which is equivalent to the L2 norm of the misfit. Alternative norms in the optimization process are an useful strategy in the inverse problem solution. Generalized statistics can be present at two sides of the inverse problem: in the noise that pollutes the data and in the norm used in the optimization algorithm. With help of a seismic problem, we polluted the signal with a q-exponential noise (using an exponent \(q_{\text {noise}}\)) and subsequently inverted the problem using a norm associated to a q-exponential (with an exponent \(q_{\text {inv}}\)). The same procedure was also applied to the simpler problem of a linear fitting. We tested the hypothesis of a relation between the exponents \(q_{noise}\) and \(q_{\text {inv}}\). The overall pattern observed is the following: inversion error are smaller for low \(q_{\text {noise}}\) and high \(q_{\text {inv}}\). In contrast, the worst inversion is found for high polluting noise (far from Gaussian noise) and for inversion with low \(q_{\text {inv}}\) (close to the Gaussian case).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from: http://sepwww.stanford.edu/public/docs/sepdatalib/marmousi/paper-html/node1.html. The Maurmousi dataset employed in the study is a standard seismic dataset and its repository is public. The manuscript has associated data in a data repository [Authors’ comment: The data used in this study can be obtained upon request. Please contact the corresponding author of the study.]

References

  1. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman lectures on physics; New millennium (Basic Books, New York, 2010), pp.1963–1965. (Originally published)

    Google Scholar 

  2. M. Razavy, An introduction to inverse problems in physics (World Scientific, 2020)

    Book  MATH  Google Scholar 

  3. Z. Xiao, D. Xiao, V. Havyarimana, H. Jiang, D. Liu, D. Wang, F. Zeng, Toward accurate vehicle state estimation under non-gaussian noises. IEEE Internet Things J. 6(6), 10652 (2019)

    Article  Google Scholar 

  4. K.E. Conroy, A. Kochoska, D. Hey, H. Pablo, K.M. Hambleton, D. Jones, J. Giammarco, M. Abdul-Masih, A. Prša, Physics of eclipsing binaries. v. general framework for solving the inverse problem. Astrophys. J. 250(2), 34 (2020)

    Article  Google Scholar 

  5. M. Bertero, M. Piana, Inverse problems in biomedical imaging: modeling and methods of solution (Springer Milan, Milano, 2006), pp.1–33

    MATH  Google Scholar 

  6. M. Zhdanov, Inverse theory and applications in geophysics, in Methods in geochemistry and geophysics. (Elsevier Science, 2015)

    Google Scholar 

  7. A. Tarantola, Inverse problem theory and methods for model parameter estimation (SIAM, 2005)

    Book  MATH  Google Scholar 

  8. S.L.E. da Silva, R. Silva, G.Z. dos Santos Lima, J.M. de Araújo, G. Corso, An outlier-resistant \(\kappa \)-generalized approach for robust physical parameter estimation. Phys. A: Stat. Mech. Appl. 600, 127554 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Crase, A. Pica, M. Noble, J. McDonald, A. Tarantola, Robust elastic nonlinear waveform inversion: application to real data. Geophysics 55, 1942 (1990)

    Article  Google Scholar 

  10. A.Y. Aravkin, M.P. Friedlander, F.J. Herrmann, T. van Leeuwen, Robust inversion, dimensionality reduction and randomized sampling. Math. Prog. 135, 101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. T. Barron, A general and adaptive robust loss function, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), p. 4331, (2019)

  12. P.T.C. Carvalho, S.L.E.F. da Silva, E.F. Duarte, R. Brossier, G. Corso, J.M. de Araújo, Full waveform inversion based on the non-parametric estimate of the probability distribution of the residuals. Geophys. J. Int. 229(1), 35 (2022)

    Article  ADS  Google Scholar 

  13. J.V.T. de Lima, S.L.E.F. da Silva, J.M. de Araújo, G. Corso, GZd.S. Lima, Nonextensive statistical mechanics for robust physical parameter estimation: the role of entropic index. Eur. Phys. J. Plus 136(3), 269 (2021)

    Article  Google Scholar 

  14. S.L.E.F. da Silva, G.Z. dos Santos Lima, E.V. Volpe, J.M. de Araújo, G. Corso, Robust approaches for inverse problems based on Tsallis and kaniadakis generalised statistics. Eur. Phys. J. Plus 136, 518 (2021)

    Article  Google Scholar 

  15. S.L.E.F. da Silva, G. Kaniadakis, Robust parameter estimation based on the generalized log-likelihood in the context of Sharma-Taneja-Mittal measure. Phys. Rev. E 104, 024107 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Tsallis, Introduction to nonextensive statistical mechanics: approaching a complex world (Springer, New York, 2009)

    MATH  Google Scholar 

  17. A. Bassrei, J. H. Quezada, Inversion of seismic data by a generalized maximum entropy method, pp. 744–747. (2005)

  18. S.L.E.F. da Silva, J.M. de Araújo, G. Corso, Full-waveform inversion based on q-Laplace distribution. Pure Appl. Geophys. 178, 3415–3426 (2021)

    Article  ADS  Google Scholar 

  19. I.P. de Lima, S.L.E.F. da Silva, G. Corso, J.M. de Araújo, Tsallis entropy, likelihood, and the robust seismic inversion. Entropy 22(4), 464 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.L.E.F. da Silva, G.Z. dos Santos Lima, J.M. de Araújo, G. Corso, Extensive and nonextensive statistics in seismic inversion. Phys. A: Stat. Mech. Appl. 563, 125496 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. S.L.E.F. da Silva, C.A. da Costa, P.T.C. Carvalho, J.M. de Araújo, L. dos Santos Lucena, G. Corso, Robust full-waveform inversion using q-statistics. Phys. A: Stat. Mech. Appl. 548, 124473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Pyrcz, C. Deutsch, Geostatistical reservoir modeling (OUP, 2014)

    Google Scholar 

  23. W. Menke, Geophysical data analysis: discrete inverse theory (Academic Press, 2012)

    MATH  Google Scholar 

  24. S.A. Silva, S.L.E. da Silva, R.F. de Souza, A.A. Marinho, J.M. de Araújo, C.G. Bezerra, Improving seismic inversion robustness via deformed Jackson Gaussian. Entropy 23(8), 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  25. J. Li, M.D. Sacchi, An lp-space matching pursuit algorithm and its application to robust seismic data denoising via time-domain radon transforms. Geophysics 86(3), V171 (2021)

    Article  ADS  Google Scholar 

  26. S.L.E.F. da Silva, P.T.C. Carvalho, J.A.M. de Araújo, G. Corso, Full-waveform inversion based on Kaniadakis statistics. Phys. Rev. E 101, 053311 (2020)

    Article  ADS  Google Scholar 

  27. S. da Silva, C. A. N. da Costa, P. T. C. Carvalho, J. M. de Araújo, L. Lucena, G. Corso, An objective function based on q-gaussian distribution for full-waveform inversion, pp. 1–5. EAGE Technical Program Expanded Abstracts, (2020)

  28. Y. Wang, Seismic inversion: theory and applications (Wiley, 2016)

    Book  Google Scholar 

  29. F. Zhang, R. Dai, H. Liu, Seismic inversion based on L1-norm misfit function and total variation regularization. J. Appl. Geophys. 109, 111–118 (2014)

    Article  ADS  Google Scholar 

  30. S. Guo, H. Wang, Seismic absolute acoustic impedance inversion with L1 norm reflectivity constraint and combined first-and second-order total variation regularizations. J. Geophys. Eng. 16(4), 773–788 (2019)

    Article  ADS  Google Scholar 

  31. Ö. Yilmaz, Seismic data analysis: processing, inversion, and interpretation of seismic data. No. N\(^{o}\) 10,v. 1 in Crisp Fifty-Minute Books, Society of Exploration Geophysicists, (2001)

  32. S. Cosma, D. Christophe, tsallisqexp: Tsallis distribution, R package version 0.9-4 (2021)

  33. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, (2013)

  34. R. Versteeg, The marmousi experience: velocity model determination on a synthetic complex data set. Geophysics 13, 09 (1994)

    Google Scholar 

Download references

Acknowledgements

J.M. de Araújo and G. Corso gratefully acknowledge support from Petrobras through the project “Statistical physics inversion for multi-parameters in reservoir characterisation” at Federal University of Rio Grande do Norte. J.M. de Araújo thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for his productivity fellowship (Grant no. 313431/2018-3). G. Corso acknowledges CNPq for support through productivity fellowship (grant no. 307907/2019-8).

Author information

Authors and Affiliations

Authors

Contributions

AS: conceptualization and methodology. RS: software and formal analysis. JM: writing—review. JC: software and writing—review. DS: software. JA: writing—review. SS: statistics and writing— review. GC: conceptualization and writing—original draft.

Corresponding author

Correspondence to Gilberto Corso.

Ethics declarations

Conflict of interest

The authors R. F. de Souza, J. L. S da Costa, K. T. dos Santos, J. M. de Araujo and G. Corso have received research support from Petrobras Company. In addition, J.M. de Araújo thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for his productivity fellowship (grant no. 313431/2018-3) and G. Corso also acknowledges CNPq for support through productivity fellowship (grant no. 307907/2019-8).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, A.A.Q.d., de Souza, R.F., Maciel, J.d.S. et al. Puzzle in inverse problems: Tsallis noise and Tsallis norm. Eur. Phys. J. B 96, 30 (2023). https://doi.org/10.1140/epjb/s10051-023-00496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00496-0

Navigation