Skip to main content
Log in

Continued functions and critical exponents: tools for analytical continuation of divergent expressions in phase transition studies

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Resummation methods using continued functions are implemented to converge divergent series appearing in perturbation problems related to continuous phase transitions in field theories. In some cases, better convergence properties are obtained using continued functions than diagonal Padé approximants, which are extensively used in literature. We check the reliability of critical exponent estimates derived previously in universality classes of O(n)-symmetric models (classical phase transitions) and Gross–Neveu–Yukawa models (quantum phase transitions) using new methods.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. F. J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev., vol. 85, pp. 631–632, 1952

  2. E. Caliceti, M. Meyer-Hermann, P. Ribeca, A. Surzhykov, U. Jentschura, From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Physics Reports 446(1), 1–96 (2007)

    ADS  MathSciNet  Google Scholar 

  3. H. Kleinert, V. Schulte-Frohlinde, Critical Properties of\(\phi ^4\)-Theories (World Scientific, Singapore, 2001)

  4. C. Bender, S. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Advanced Mathematical Methods for Scientists and Engineers (Springer, 1999)

  5. G.A. Baker, Essentials of Pade approximants (Academic Press, New York, 1975)

    MATH  Google Scholar 

  6. G.A. Baker, P. Graves-Morris, Padé Approximants. Encyclopedia of Mathematics and its Applications, 2nd edn. (Cambridge University Press, 1996)

  7. V. Abhignan, R. Sankaranarayanan, Continued functions and perturbation series: Simple tools for convergence of diverging series in \({O}(n)\)-symmetric \(\phi ^4\) field theory at weak coupling limit. Journal of Statistical Physics 183(1), 4 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  8. C.M. Bender, J.P. Vinson, Summation of power series by continued exponentials. Journal of Mathematical Physics 37(8), 4103–4119 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  9. M. Campostrini, M. Hasenbusch, A. Pelissetto, E. Vicari, Theoretical estimates of the critical exponents of the superfluid transition in \(^{4}\rm He \) by lattice methods. Phys. Rev. B 74, 144506 (2006)

    ADS  Google Scholar 

  10. S.M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su, A. Vichi, Carving out ope space and precise \({O}(2)\) model critical exponents. Journal of High Energy Physics 2020(6), 142 (2020)

    MathSciNet  MATH  Google Scholar 

  11. G. De Polsi, I. Balog, M. Tissier, N. Wschebor, Precision calculation of critical exponents in the \({O(N)}\) universality classes with the nonperturbative renormalization group. Phys. Rev. E 101, 042113 (2020)

    ADS  MathSciNet  Google Scholar 

  12. M. Hasenbusch, Monte carlo study of an improved clock model in three dimensions. Phys. Rev. B 100, 224517 (Dec2019)

  13. J.A. Lipa, J.A. Nissen, D.A. Stricker, D.R. Swanson, T.C.P. Chui, Specific heat of liquid helium in zero gravity very near the lambda point. Phys. Rev. B 68, 174518 (2003)

    ADS  Google Scholar 

  14. A.M. Shalaby, \(\lambda \)-point anomaly in view of the seven-loop hypergeometric resummation for the critical exponent \(\nu \) of the \(O(2)\)\(\phi ^{4}\) model. Phys. Rev. D 102, 105017 (2020)

  15. A.M. Shalaby, Critical exponents of the \({O(N)}\)-symmetric \(\phi ^4\) model from the \(\varepsilon ^7\) hypergeometric-meijer resummation. The European Physical Journal C 2, 2 (2021)

    Google Scholar 

  16. O. Schnetz, Numbers and functions in quantum field theory. Phys. Rev. D 97, 085018 (2018)

    ADS  MathSciNet  Google Scholar 

  17. M. Hasenbusch, Finite size scaling study of lattice models in the three-dimensional Ising universality class. Phys. Rev. B 82, 174433 (2010)

    ADS  Google Scholar 

  18. F. Kos, D. Poland, D. Simmons-Duffin, A. Vichi, Precision islands in the Ising and \({O}(n)\) models. Journal of High Energy Physics 2016(8), 36 (2016)

    MathSciNet  MATH  Google Scholar 

  19. V. Abhignan, R. Sankaranarayanan, Continued functions and Borel-Leroy transformation: Resummation of six-loop \(\epsilon \)-expansions from different universality classes. J. Phys. A Math. Theor. 2, 2 (2021)

    MATH  Google Scholar 

  20. L.T. Adzhemyan, E.V. Ivanova, M.V. Kompaniets, A. Kudlis, A.I. Sokolov, Six-loop \(\epsilon \) expansion study of three-dimensional \(n\)-vector model with cubic anisotropy. Nuclear Physics B 940, 332–350 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  21. M. Kompaniets, A. Kudlis, A. Sokolov, Six-loop \(\epsilon \) expansion study of three-dimensional \({O}(n)\times {O}(m)\) spin models. Nuclear Physics B 950, 114874 (2020)

    MathSciNet  MATH  Google Scholar 

  22. M.V. Kompaniets, A. Kudlis, A.I. Sokolov, Critical behavior of the weakly disordered Ising model: Six-loop \(\sqrt{\varepsilon }\) expansion study. Phys. Rev. E 103, 022134 (2021)

  23. V.I. Yukalov, Interplay between approximation theory and renormalization group. Physics of Particles and Nuclei 50(2), 141–209 (2019)

    ADS  Google Scholar 

  24. V.I. Yukalov, E.P. Yukalova, From asymptotic series to self-similar approximants. Physics 3(4), 829–878 (2021)

    ADS  Google Scholar 

  25. H. Mera, T.G. Pedersen, B.K. Nikolić, Nonperturbative quantum physics from low-order perturbation theory. Phys. Rev. Lett. 115, 143001 (2015)

    ADS  Google Scholar 

  26. H. Mera, T.G. Pedersen, B.K. Nikolić, Fast summation of divergent series and resurgent transseries from meijer-\(g\) approximants. Phys. Rev. D 97, 105027 (2018)

    ADS  MathSciNet  Google Scholar 

  27. A.M. Shalaby, Weak-coupling, strong-coupling and large-order parametrization of the hypergeometric-meijer approximants. Results in Physics 19, 103376 (2020)

    Google Scholar 

  28. E.B.V. Vleck, On the convergence of the continued fraction of Gauss and other continued fractions. Annals of Mathematics 3(1/4), 1–18 (1901)

    MathSciNet  MATH  Google Scholar 

  29. M.V. Kompaniets, E. Panzer, Minimally subtracted six-loop renormalization of \({O}(n)\)-symmetric \({\phi }^{4}\) theory and critical exponents. Phys. Rev. D 96, 036016 (2017)

    ADS  MathSciNet  Google Scholar 

  30. A.I. Aptekarev, V.I. Buslaev, A. Martinez-Finkelshtein, S.P. Suetin, Pade approximants, continued fractions, and orthogonal polynomials. Russian Mathematical Surveys 66(6), 1049–1131 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  31. A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, O. Njaastad, Orthogonal Rational Functions and Continued Fractions (Springer, Netherlands, 2001)

    MATH  Google Scholar 

  32. L. Lorentzen, Padé approximation and continued fractions, Applied Numerical Mathematics, vol. 60, no. 12, pp. 1364–1370, 2010

  33. E. Ising, Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fur Physik 31(1), 253–258 (1925)

    ADS  MATH  Google Scholar 

  34. C. Domb, On the theory of cooperative phenomena in crystals. Advances in Physics 9(34), 149–244 (1960)

    ADS  Google Scholar 

  35. L.P. Kadanoff, Notes on Migdal’s Recursion Formulas. Annals Phys. 100, 359–394 (1976)

    ADS  Google Scholar 

  36. N. Zerf, L.N. Mihaila, P. Marquard, I.F. Herbut, M.M. Scherer, Four-loop critical exponents for the Gross-Neveu-Yukawa models. Phys. Rev. D 96, 096010 (2017)

    ADS  Google Scholar 

  37. L. D. Landau, On the theory of phase transitions, Zh. Eksp. Teor. Fiz., vol. 7, pp. 19–32, 1937

  38. L.P. Kadanoff, W. Gotze, D. Hamblen, R. Hecht, E.A.S. Lewis, V.V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, J. Kane, Static Phenomena Near Critical Points: Theory and Experiment. Rev. Mod. Phys. 39, 395–431 (1967)

    ADS  Google Scholar 

  39. K.G. Wilson, J.B. Kogut, The Renormalization group and the epsilon expansion. Phys. Rept. 12, 75–199 (1974)

    ADS  Google Scholar 

  40. D. Poland, Summation of series in statistical mechanics by continued exponentials. Physica A 250(1), 394–422 (1998)

    ADS  MathSciNet  Google Scholar 

  41. B. Delamotte, M. Dudka, Y. Holovatch, D. Mouhanna, Relevance of the fixed dimension perturbative approach to frustrated magnets in two and three dimensions. Phys. Rev. B 82, 104432 (Sep2010)

  42. N. Clisby, B. Dünweg, High-precision estimate of the hydrodynamic radius for self-avoiding walks. Phys. Rev. E 94, 052102 (Nov2016)

  43. M. Kompaniets, K.J. Wiese, Fractal dimension of critical curves in the \({O}(n)\)-symmetric \({\phi }^{4}\) model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, \(XY\), and Heisenberg models. Phys. Rev. E 101, 012104 (2020)

    ADS  MathSciNet  Google Scholar 

  44. A.C. Echeverri, B. von Harling, M. Serone, The effective bootstrap. Journal of High Energy Physics 2016(9), 97 (2016)

    Google Scholar 

  45. M. Hasenbusch, Eliminating leading corrections to scaling in the three-dimensional O(N)-symmetric \(\phi ^4\) model: N = 3 and 4. Journal of Physics A: Mathematical and General 34(40), 8221 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  46. J.-P. Eckmann, J. Magnen, R. Sénéor, Decay properties and Borel summability for the Schwinger functions in \({P(\Phi )_2}\) theories. Commun. Math. Phys. 39(4), 251–271 (1975)

    ADS  Google Scholar 

  47. E.V. Orlov, A.I. Sokolov, Critical thermodynamics of two-dimensional systems in the five-loop renormalization-group approximation. Physics of the Solid State 42(11), 2151–2158 (2000)

    ADS  Google Scholar 

  48. P. Calabrese, M. Caselle, A. Celi, A. Pelissetto, E. Vicari, Non-analyticity of the Callan-Symanzik \(\beta \)-function of two-dimensional \({O}(n)\) models. Journal of Physics A: Mathematical and General 33(46), 8155–8170 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  49. B. Nienhuis, Exact critical point and critical exponents of \({O}(n)\) models in two dimensions. Phys. Rev. Lett. 49, 1062–1065 (1982)

    ADS  MathSciNet  Google Scholar 

  50. S. Caracciolo, A.J. Guttmann, I. Jensen, A. Pelissetto, A.N. Rogers, A.D. Sokal, Correction-to-scaling exponents for two-dimensional self-avoiding walks. Journal of Statistical Physics 120(5), 1037–1100 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  51. M. Kardar, Statistical Physics of Fields (Cambridge University Press, 2007)

  52. H. A. Kramers and G. H. Wannier, Statistics of the two-dimensional ferromagnet. part I, Phys. Rev., vol. 60, pp. 252–262, 1941

  53. L. Onsager, Crystal statistics. I. a two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

  54. G.A. Baker, Further applications of the Padé approximant method to the Ising and Heisenberg models. Phys. Rev. 129, 99–102 (1963)

    ADS  Google Scholar 

  55. C. Domb, Series expansions for ferromagnetic models. Advances in Physics 19(79), 339–370 (1970)

    ADS  Google Scholar 

  56. G. Martinelli, G. Parisi, A systematical improvement of the Migdal recursion formula. Nuclear Physics B 180(2), 201–220 (1981)

    ADS  MathSciNet  Google Scholar 

  57. S. Caracciolo, Improved Migdal recursion formula for the Ising model in two dimensions on a triangular lattice. Nuclear Physics B 180(3), 405–416 (1981)

    ADS  MathSciNet  Google Scholar 

  58. Y. Holovatch, Critical exponents of Ising-like systems in general dimensions. Theoretical and Mathematical Physics 96(3), 1099–1109 (1993)

    ADS  MathSciNet  Google Scholar 

  59. T. Wehling, A. Black-Schaffer, A. Balatsky, Dirac materials. Advances in Physics 63(1), 1–76 (2014)

    ADS  Google Scholar 

  60. O. Vafek, A. Vishwanath, Dirac fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annual Review of Condensed Matter Physics 5(1), 83–112 (2014)

    ADS  Google Scholar 

  61. S.V. Syzranov, P.M. Ostrovsky, V. Gurarie, L. Radzihovsky, Critical exponents at the unconventional disorder-driven transition in a Weyl semimetal. Phys. Rev. B 93, 155113 (2016)

    ADS  Google Scholar 

  62. T. Louvet, D. Carpentier, A.A. Fedorenko, On the disorder-driven quantum transition in three-dimensional relativistic metals. Phys. Rev. B 94, 220201 (2016)

    ADS  Google Scholar 

  63. K. Kobayashi, T. Ohtsuki, K.-I. Imura, I.F. Herbut, Density of states scaling at the semimetal to metal transition in three dimensional topological insulators. Phys. Rev. Lett. 112, 016402 (2014)

    ADS  Google Scholar 

  64. J. Maciejko, R. Nandkishore, Weyl semimetals with short-range interactions. Phys. Rev. B 90, 035126 (2014)

    ADS  Google Scholar 

  65. P. Goswami, S. Chakravarty, Quantum criticality between topological and band insulators in \(3+1\) dimensions. Phys. Rev. Lett. 107, 196803 (2011)

    ADS  Google Scholar 

  66. D.V. Khveshchenko, Ghost excitonic insulator transition in layered graphite. Phys. Rev. Lett. 87, 246802 (2001)

    ADS  Google Scholar 

  67. I.F. Herbut, Interactions and phase transitions on graphene’s honeycomb lattice. Phys. Rev. Lett. 97, 146401 (2006)

    ADS  Google Scholar 

  68. C. Honerkamp, Density waves and Cooper pairing on the honeycomb lattice. Phys. Rev. Lett. 100, 146404 (2008)

    ADS  Google Scholar 

  69. J. Zinn-Justin, Four-fermion interaction near four dimensions. Nuclear Physics B 367(1), 105–122 (1991)

    ADS  MathSciNet  Google Scholar 

  70. B. Rosenstein, Yu. Hoi-Lai, A. Kovner, Critical exponents of new universality classes. Physics Letters B 314(3), 381–386 (1993)

    ADS  Google Scholar 

  71. I.F. Herbut, Interactions and phase transitions on graphene’s honeycomb lattice. Phys. Rev. Lett. 97, 146401 (2006)

    ADS  Google Scholar 

  72. B. Knorr, Ising and Gross-Neveu model in next-to-leading order. Phys. Rev. B 94, 245102 (2016)

    ADS  Google Scholar 

  73. L. Janssen, I.F. Herbut, Antiferromagnetic critical point on graphene’s honeycomb lattice: A functional renormalization group approach. Phys. Rev. B 89, 205403 (2014)

    ADS  Google Scholar 

  74. S. Chandrasekharan, A. Li, Quantum critical behavior in three dimensional lattice Gross-Neveu models. Phys. Rev. D 88, 021701 (2013)

    ADS  Google Scholar 

  75. E. Huffman, S. Chandrasekharan, Fermion bag approach to hamiltonian lattice field theories in continuous time. Phys. Rev. D 96, 114502 (2017)

    ADS  MathSciNet  Google Scholar 

  76. Z.-X. Li, Y.-F. Jiang, H. Yao, Fermion-sign-free Majarana-quantum-Monte-Carlo studies of quantum critical phenomena of Dirac fermions in two dimensions. New J. Phys. 17(8), 085003 (2015)

    ADS  Google Scholar 

  77. L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin, R. Yacoby, Fermion-scalar conformal blocks. Journal of High Energy Physics 2016(4), 74 (2016)

    MathSciNet  MATH  Google Scholar 

  78. L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin, Bootstrapping 3d fermions with global symmetries. Journal of High Energy Physics 2018(1), 36 (2018)

    MathSciNet  Google Scholar 

  79. T. Grover, D.N. Sheng, A. Vishwanath, Emergent space-time supersymmetry at the boundary of a topological phase. Science 344(6181), 280–283 (2014)

    ADS  Google Scholar 

  80. H. Gies, T. Hellwig, A. Wipf, O. Zanusso, A functional perspective on emergent supersymmetry. Journal of High Energy Physics 2017(12), 132 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  81. B. Roy, V. Juričić, I.F. Herbut, Quantum superconducting criticality in graphene and topological insulators. Phys. Rev. B 87, 041401 (2013)

    ADS  Google Scholar 

  82. C.-Y. Hou, C. Chamon, C. Mudry, Electron fractionalization in two-dimensional graphenelike structures. Phys. Rev. Lett. 98, 186809 (2007)

  83. S. Ryu, C. Mudry, C.-Y. Hou, C. Chamon, Masses in graphenelike two-dimensional electronic systems: Topological defects in order parameters and their fractional exchange statistics. Phys. Rev. B 80, 205319 (2009)

    ADS  Google Scholar 

  84. B. Roy, I.F. Herbut, Unconventional superconductivity on honeycomb lattice: Theory of Kekule order parameter. Phys. Rev. B 82, 035429 (2010)

    ADS  Google Scholar 

  85. S.-S. Lee, Emergence of supersymmetry at a critical point of a lattice model. Phys. Rev. B 76, 075103 (2007)

    ADS  Google Scholar 

  86. Z.-X. Li, Y.-F. Jiang, S.-K. Jian, H. Yao, Fermion-induced quantum critical points. Nature Communications 8(1), 314 (2017)

    ADS  Google Scholar 

  87. L. Classen, I.F. Herbut, M.M. Scherer, Fluctuation-induced continuous transition and quantum criticality in Dirac semimetals. Phys. Rev. B 96, 115132 (2017)

    ADS  Google Scholar 

  88. N. Bobev, S. El-Showk, D. Mazáč, M.F. Paulos, Bootstrapping the three dimensional supersymmetric Ising model. Phys. Rev. Lett. 115, 051601 (2015)

    ADS  MATH  Google Scholar 

  89. I.F. Herbut, Interactions and phase transitions on graphene’s honeycomb lattice. Phys. Rev. Lett. 97, 146401 (2006)

    ADS  Google Scholar 

  90. C. Honerkamp, Density waves and cooper pairing on the honeycomb lattice. Phys. Rev. Lett. 100, 146404 (2008)

    ADS  Google Scholar 

  91. M.V. Ulybyshev, P.V. Buividovich, M.I. Katsnelson, M.I. Polikarpov, Monte carlo study of the semimetal-insulator phase transition in monolayer graphene with a realistic interelectron interaction potential. Phys. Rev. Lett. 111, 056801 (2013)

    ADS  Google Scholar 

  92. B. Knorr, Critical chiral Heisenberg model with the functional renormalization group. Phys. Rev. B 97, 075129 (2018)

    ADS  Google Scholar 

  93. F. Parisen Toldin, M. Hohenadler, F.F. Assaad, I.F. Herbut, Fermionic quantum criticality in honeycomb and \(\pi \)-flux hubbard models: Finite-size scaling of renormalization-group-invariant observables from quantum monte carlo. Phys. Rev. B 91, 165108 (2015)

  94. Y. Otsuka, S. Yunoki, S. Sorella, Universal quantum criticality in the metal-insulator transition of two-dimensional interacting Dirac electrons. Phys. Rev. X 6, 011029 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Venkat Abhignan; methodology: Venkat Abhignan; formal analysis and investigation: Venkat Abhignan; writing—original draft preparation: Venkat Abhignan; writing—review and editing: R. Sankaranarayanan; Supervision: R. Sankaranarayanan.

Corresponding author

Correspondence to Venkat Abhignan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhignan, V., Sankaranarayanan, R. Continued functions and critical exponents: tools for analytical continuation of divergent expressions in phase transition studies. Eur. Phys. J. B 96, 31 (2023). https://doi.org/10.1140/epjb/s10051-023-00494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00494-2

Navigation