Skip to main content
Log in

The role of external single-well potential, spatially varying temperature, spatially varying trap potential and time varying force on the impurity dynamics

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we study the role of external parabolic potential, spatially varying temperature, spatially varying trap potential, and time-varying weak signal on the impurities walking from one lattice site to another lattice site. Both temperature and trap potential effects force the system to undergo a phase transition from single well potential to triple well effective potential. In addition, the role of time-varying signal rocks the triple well effective potential and helps the impurities easily surmount the potential barrier. As a result, we study the characterization of stochastic resonance both analytically and numerically.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Auhtors’ comment: Since we did theoretical work, we have chosen “My manuscript has no associated data or the data will not be deposited.]

References

  1. V. Narayan, M. Willander, Phys. Rev. B 65(12), 125330 (2002)

    Article  ADS  Google Scholar 

  2. V. Narayan, M. Willander, Phys. Rev. B 65(7), 075308 (2002)

    Article  ADS  Google Scholar 

  3. S.M. Sze, Y. Li, K.K. Ng, Physics of semiconductor devices (John wiley & sons, 2021)

  4. B.J. Van Zeghbroeck, Principles of semiconductor devices (2011)

  5. G. Popovici, M. Prelas, Diamond Related Materials 4(12), 1305 (1995)

    Article  ADS  Google Scholar 

  6. G. Popovici, T. Sung, M. Prelas, J. Chem. Vapor Deposition 3, 115 (1994)

    Google Scholar 

  7. M. Asfaw, B. Aragie, M. Bekele, Euro. Phys. J. B 79(3), 371 (2011)

    Article  ADS  Google Scholar 

  8. B. Aragie, M. Asfaw, L. Demeyu, M. Bekele, Euro. Phys. J. B 87(9), 1 (2014)

    Google Scholar 

  9. T. Birhanu, Y. Abebe, L. Demeyu, M. Taye, M. Bekele, Int. J. Modern Phys. B 35(28), 2150284 (2021)

    Article  ADS  Google Scholar 

  10. Y. Abebe, T. Birhanu, L. Demeyu, M. Taye, M. Bekele, Y. Bassie, Euro. Phys. J. B 95(1), 1 (2022)

    Article  ADS  Google Scholar 

  11. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14(11), L453 (1981)

    Article  ADS  Google Scholar 

  12. B. McNamara, K. Wiesenfeld, Phys. Rev. A 39(9), 4854 (1989)

    Article  ADS  Google Scholar 

  13. L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. Lett. 74(7), 1052 (1995)

    Article  ADS  Google Scholar 

  14. E. Lutz, Phys. Rev. E 64(5), 051106 (2001)

    Article  ADS  Google Scholar 

  15. V. Gandhimathi, S. Rajasekar, J. Kurths, Phys. Lett. A 360(2), 279 (2006)

    Article  ADS  Google Scholar 

  16. R. Mankin, K. Laas, T. Laas, E. Reiter, Phys. Rev. E 78(3), 031120 (2008)

    Article  ADS  Google Scholar 

  17. S. Saikia, Phys. A 416, 411 (2014)

  18. E. Heinsalu, M. Patriarca, F. Marchesoni, Euro. Phys. J. B 69(1), 19 (2009)

    Article  ADS  Google Scholar 

  19. E. Heinsalu, M. Patriarca, F. Marchesoni, Chem. Phys. 375(2–3), 410 (2010)

  20. W. Zhang, G. Di, Nonlinear Dyn. 77(4), 1589 (2014)

    Article  Google Scholar 

  21. Y. Xu, Y. Li, J. Li, J. Feng, H. Zhang, J. Stat. Phys. 158(1), 120 (2015)

  22. M. He, W. Xu, Z. Sun, Nonlinear Dyn. 79(3), 1787 (2015)

    Article  Google Scholar 

  23. R.l. Lang, L. Yang, H.l. Qin, G.h. Di, Nonlinear Dyn. 69(3), 1423 (2012)

  24. J.F. Lindner, B.J. Breen, M.E. Wills, A.R. Bulsara, W.L. Ditto, Phys. Rev. E 63(5), 051107 (2001)

    Article  ADS  Google Scholar 

  25. P. Shi, P. Li, S. An, D. Han, Discrete Dyn. Nat. Soc. 2016 (2016)

  26. S. Fauve, F. Heslot, Phys. Lett. A 97(1–2), 5 (1983)

    Article  ADS  Google Scholar 

  27. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. Lett. 62(4), 349 (1989)

    Article  ADS  Google Scholar 

  28. G. Hu, H. Haken, C. Ning, Phys. Lett. A 172(1–2), 21 (1992)

    Article  ADS  Google Scholar 

  29. B. McNamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60(25), 2626 (1988)

    Article  ADS  Google Scholar 

  30. C. Presilla, F. Marchesoni, L. Gammaitoni, Phys. Rev. A 40(4), 2105 (1989)

    Article  ADS  Google Scholar 

  31. P. Jung, P. Hänggi, EPL (Europhysics Letters) 8(6), 505 (1989)

    Article  ADS  Google Scholar 

  32. P. Jung, P. Hänggi, Phys. Rev. A 41(6), 2977 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  33. P. Jung, P. Hänggi, Phys. Rev. A 44(12), 8032 (1991)

    Article  ADS  Google Scholar 

  34. B. Di Bartolo, Disordered Solids: Structures and Processes, vol. 46 (Springer Science & Business Media, 2013)

  35. N. Van Kampen, IBM J. Res. Dev. 32(1), 107 (1988)

    Article  Google Scholar 

  36. C.W. Gardiner, et al., Handbook of stochastic methods, vol. 3 (springer Berlin, 1985)

  37. H. Kramers, Physica (Utrecht) 7, 284 (1940)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Mulugeta Bekele for constant encouragement and for allowing us to use the computational laboratory office.

Author information

Authors and Affiliations

Authors

Contributions

TB and YB: conception and design of the model. TB, YB and YA performed the analytic calculations. TB, YB and YA analysing and interpreting the results. TB, YB and YA drafted manuscript preparation. All authors reviews the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Tibebe Birhanu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birhanu, T., Bassie, Y. & Abebe, Y. The role of external single-well potential, spatially varying temperature, spatially varying trap potential and time varying force on the impurity dynamics. Eur. Phys. J. B 96, 9 (2023). https://doi.org/10.1140/epjb/s10051-023-00478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00478-2

Navigation