Skip to main content
Log in

Geometric effect on Majorana corner modes in mesoscopic superconducting loop systems with Rashba spin-orbit interaction

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on the Bogoliubov-de Gennes theory, the energy spectra in the gap region are investigated for mesoscopic superconducting asymmetric loops with Rashba spin-orbit interaction. Compared with the symmetric square-loop system, the feature of Majorana zero-energy states bounded in the vicinity of loop corners is sensitive to the geometric effect due to the reconstruction of energy spectra of the condensate. The influences of the rectangular aspect-radio, the off-centered hole, and the surface defect are mainly considered. The evolution of energy levels closest to the Fermi energy as a function of the spin-orbit coupling strength \(V_{\text {Rso}}\) as well as the zero-energy local density of states at the gapless points are given. The level crossing does not appear in the weak \(V_{\text {Rso}}\) regime for the rectangular loop, and a displacement of the centered hole of a square loop can lead to a deviation from the symmetric location of Majorana corner modes. In particular, the number of zero-energy eigenvalues is disturbed by the surface defects, and novel spatial patterns of Majorana corner states can be obtained.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The results and data presented in this work can be replicated using the numerical procedures described in the text.]

References

  1. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  2. M. Sato, Y. Ando, Rep. Progress Phys. 80, 076501 (2017)

    Article  ADS  Google Scholar 

  3. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S.D. Sarma, Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  Google Scholar 

  4. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, P.A. Fisher, Nat. Phys. 7, 412 (2011)

    Article  Google Scholar 

  5. X. Zhu, Phys. Rev. B 97, 205134 (2018)

    Article  ADS  Google Scholar 

  6. X. Zhu, Phys. Rev. Lett. 122, 236401 (2019)

    Article  ADS  Google Scholar 

  7. M. Geier, L. Trifunovic, M. Hoskam, P.W. Brouwer, Phys. Rev. B 97, 205135 (2018)

    Article  ADS  Google Scholar 

  8. E. Khalaf, Phys. Rev. B 97, 205136 (2018)

    Article  ADS  Google Scholar 

  9. Z. Yan, Phys. Rev. Lett. 123, 177001 (2019)

    Article  ADS  Google Scholar 

  10. Z. Yan, Phys. Rev. B 100, 205406 (2019)

    Article  ADS  Google Scholar 

  11. R.-X. Zhang, W.S. Cole, S.D. Sarma, Phys. Rev. Lett. 123, 167001 (2019)

    Article  ADS  Google Scholar 

  12. W. Ya-Jie, J. Hou, Y.-M. Li, X.-W. Luo, X. Shi, C. Zhang, Phys. Rev. Lett. 124, 227001 (2020)

    Article  ADS  Google Scholar 

  13. K. Plekhanov, N. Muller, Y. Volpez, D.M. Kennes, H. Schoeller, D. Loss, J. Klinovaja, Phys. Rev. B 103, L041401 (2021)

    Article  ADS  Google Scholar 

  14. Y. Volpez, D. Loss, J. Klinovaja, Phys. Rev. Lett. 122, 126402 (2019)

    Article  ADS  Google Scholar 

  15. Y. Wang, M. Lin, T.L. Hughes, Phys. Rev. B 98, 165144 (2018)

    Article  ADS  Google Scholar 

  16. W. Zhigang, Z. Yan, W. Huang, Phys. Rev. B 99, 020508 (2019)

    Article  Google Scholar 

  17. M. Kheirkhah, Z. Yan, Y. Nagai, F. Marsiglio, Phys. Rev. Lett. 125, 017001 (2020)

    Article  ADS  Google Scholar 

  18. Y. Xie, G.-Q. Zha, Eur. Phys. J. B 95, 120 (2022)

    Article  ADS  Google Scholar 

  19. P.S. Deo, V.A. Schweigert, F.M. Peeters, A.K. Geim, Phys. Rev. Lett. 79, 4653 (1997)

    Article  ADS  Google Scholar 

  20. B.J. Baelus, F.M. Peeters, Phys. Rev. B 65, 104515 (2002)

    Article  ADS  Google Scholar 

  21. G.R. Berdiyorov, B.J. Baelus, M.V. Milosevic, F.M. Peeters, Phys. Rev. B 68, 174521 (2003)

    Article  ADS  Google Scholar 

  22. G.R. Berdiyorov, S.H. Yu, Z.L. Xiao, F.M. Peeters, J. Hua, A. Imre, W.K. Kwok, Phys. Rev. B 80, 064511 (2009)

    Article  ADS  Google Scholar 

  23. G.R. Berdiyorov, M.V. Milosevic, F.M. Peeters, Phys. Rev. B 81, 144511 (2010)

    Article  ADS  Google Scholar 

  24. N. Sedlmayr, J.M. Aguiar-Hualde, C. Bena, Phys. Rev. B 93, 155425 (2016)

    Article  ADS  Google Scholar 

  25. R. Geurts, M.V. Milosevic, F.M. Peeters, Phys. Rev. Lett. 97, 137002 (2006)

    Article  ADS  Google Scholar 

  26. R. Geurts, M.V. Milosevic, F.M. Peeters, Phys. Rev. B 75, 184511 (2007)

    Article  ADS  Google Scholar 

  27. R. Geurts, M.V. Milosevic, F.M. Peeters, Phys. Rev. B 79, 174508 (2009)

  28. G.-Q. Zha, M.V. Milosevic, S.-P. Zhou, F.M. Peeters, Phys. Rev. B 84, 132501 (2011)

    Article  ADS  Google Scholar 

  29. G.-Q. Zha, S.-S. Wang, J.-C. Wang, Shi-Ping. Zhou, J. Appl. Phys. 112, 033907 (2012)

    Article  ADS  Google Scholar 

  30. A.C. Potter, Patrick A. Lee, Phys. Rev. Lett. 105, 227003 (2010)

    Article  ADS  Google Scholar 

  31. S. Ikegaya, W.B. Rui, D. Manske, A.P. Schnyder, Phys. Rev. Res. 3, 023007 (2021)

    Article  Google Scholar 

  32. P.G. de Gennes, Superconductivity of metals and alloys (Addison-Wesley, New York, 1994)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant Nos. 62171267 and 61771298.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Guo-Qiao Zha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zha, GQ. Geometric effect on Majorana corner modes in mesoscopic superconducting loop systems with Rashba spin-orbit interaction. Eur. Phys. J. B 95, 204 (2022). https://doi.org/10.1140/epjb/s10051-022-00473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00473-z

Navigation