Skip to main content
Log in

A three-terminal heat engine based on resonant-tunneling multi-level quantum dots

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A three-terminal heat engine based on resonant-tunneling multi-level quantum dots is proposed. With the help of Landauer formula, the general expressions for the charge and heat currents, the power output and efficiency are derived. In the linear response regime an explicit analytic expressions for the charge and heat currents, the maximum power output and the corresponding efficiency is presented. Next, the performance characteristic and optimal performance of the heat engine is investigated in the nonlinear response regime by numerical calculation. Finally, the influence of the main parameters, including the asymmetry factor, the energy-level spacing, the energy difference, the number of discrete energy levels, the bias voltage, and the temperature difference on the optimal performance of the heat engine is analyzed in detail. By choosing appropriate parameters one can obtain the maximum power output and the corresponding efficiency at maximum output power.

Graphical abstract

A Schematic diagram of a three-terminal heat engine with resonant-tunneling multi-level quantum dots. A central cavity (red) with chemical potential C is connected μc to the left/right electron reservoir (blue) via multi-level quantum dots. The direction of the arrow indicates the positive direction of the current and heat flow. B The optimized power output Popt in units of \(\frac{{({k_B}T)^2}}{{2\hbar}}\)and the corresponding efficiency ηP in unit of ηC as a function of N for given \(\delta E=0.1k_{B}T\). C The optimized power output Popt and the corresponding efficiency ηP as a function of \(\delta E\) for given N = 11. D The maximum power output Pmax in units of \(\frac{{({k_B}T)^2}}{{2\hbar}}\) and the corresponding efficiency ηP in units of ηC as a function of the temperature difference \(\Delta / T\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: Authors can confirm that all relevant data are included in the article.]

References

  1. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996)

    ADS  Google Scholar 

  2. T.E. Humphrey, R. Newbury, R.P. Taylor, H. Linke, Phys. Rev. Lett. 89, 116801 (2002)

    ADS  Google Scholar 

  3. M. Esposito, K. Lindenberg, C. Van den Broeck, Europhys. Lett. 85, 60010 (2009)

    ADS  Google Scholar 

  4. G. Benenti, G. Casati, K. Saito, R.S. Whitney, Phys. Rep. 694, 1 (2017)

    MathSciNet  ADS  Google Scholar 

  5. B. Sothmann, R. Sánchez, A.N. Jordan, Nanotechnology 26, 032001 (2015)

    ADS  Google Scholar 

  6. A.N. Jordan, B. Sothmann, R. Sánchez, M. Büttiker, Phys. Rev. B 87, 075312 (2013)

    ADS  Google Scholar 

  7. G. Jaliel, R.K. Puddy, R. Sánchez, A.N. Jordan, B. Sothmann, I. Farrer, J.P. Griffiths, D.A. Ritchie, C.G. Smith, Phys. Rev. Lett. 123, 117701 (2019)

    ADS  Google Scholar 

  8. Y.Y. Yang, S. Xu, J.Z. He, Chin. Phys. Lett. 37, 120502 (2020)

    ADS  Google Scholar 

  9. H.L. Edwards, Q. Niu, A.L De Lozanne, Appl. Phys. Lett. 63, 1815 (1993).

  10. H.L. Edwards, Q. Niu, G. A. Georgakis, A.L De Lozanne, Phys. Rev. B 52, 5714 (1995).

  11. J.R. Prance, C.G. Smith, J.P. Griffiths, S.J. Chorley, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Phys. Rev. Lett. 102, 146602 (2009)

    ADS  Google Scholar 

  12. J.H. Jiang, O. Entin-Wohlman, Y. Imry, Phys. Rev. B 85, 075412 (2012)

    ADS  Google Scholar 

  13. J.H. Jiang, Y. Imry, Phys. Rev. B 97, 125422 (2018)

    ADS  Google Scholar 

  14. Y. Zhang, G. Lin, J. Chen, Phys. Rev. E 91, 052118 (2015)

    MathSciNet  ADS  Google Scholar 

  15. S. Kano, M. Fujii, Nanotechnology 28, 095403 (2017)

    ADS  Google Scholar 

  16. R.S. Whitney, R. Sánchez, F. Haupt, J. Splettstoesser, Phys. E 82, 176 (2016)

    Google Scholar 

  17. J.S. Lim, D. Sánchez, R. López, J. Appl. Phys. 20, 023038 (2018)

    Google Scholar 

  18. A.M. Daré, P. Lombardo, Phys. Rev. B 96, 115414 (2017)

    ADS  Google Scholar 

  19. H. Su, Z.C. Shi, J.Z. He, Chin. Phys. Lett. 32, 100501 (2015)

    ADS  Google Scholar 

  20. Z.C. Shi, W.F. Qin, J.Z. He, Mod. Phys. Lett. B 30, 1650397 (2016)

    ADS  Google Scholar 

  21. J.Y. Du, T. Fu, S. Su, J. Chen, Eur. Phys. J. D 75, 232 (2021)

    ADS  Google Scholar 

  22. A.-M. Daré, Phys. Rev. B 100, 195427 (2019)

    ADS  Google Scholar 

  23. S.S. Qiu, Z.M. Ding, L.G. Chen, Y.L. Ge, Sci. China Technol. Sci. 64, 1641 (2021)

    ADS  Google Scholar 

  24. S.K. Manikandan, E. Jussiau, A.N. Jordan, Phys. Rev. B 102, 235427 (2020)

    ADS  Google Scholar 

  25. P.A. Erdman, B. Bhandari, R. Fazio, J.P. Pekola, F. Taddei, Phys. Rev. B 98, 045433 (2018)

    ADS  Google Scholar 

  26. R.S. Whitney, Phys. Rev. L 112, 130601 (2014)

    ADS  Google Scholar 

  27. B. Roche, P. Roulleau, T. Jullien, Y. Jompol, I. Farrer, D.A. Ritchie, D.C. Glattli, Nat. Commun. 6, 6738 (2015)

    ADS  Google Scholar 

  28. F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, L. Worschech, Phys. Rev. Lett. 114, 146805 (2015)

    ADS  Google Scholar 

  29. M. Josefsson, A. Svilans, A. Burke, E. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, H. Linke, Nat. Nanotechnol. 13, 920 (2018)

    ADS  Google Scholar 

  30. A.J. Keller, J.S. Lim, D. Sánchez, R. López, S. Amasha, J.A. Katine, Phys. Rev. Lett. 117, 066602 (2016)

    ADS  Google Scholar 

  31. B. Sothmann, R. Sánchez, A.N. Jordan, M. Büttiker, Phys. Rev. B 85, 205301 (2012)

    ADS  Google Scholar 

  32. B. Sothmann, R. Sánchez, A.N. Jordan, M. Büttiker, New J. Phys. 15, 095021 (2013)

    ADS  Google Scholar 

  33. Y. Choi, A.N. Jordan, Phys. E 74, 465 (2015)

    Google Scholar 

  34. Z.B. Lin, Y.Y. Yang, J.Z. He, Chin. Phys. Lett. 36, 060501 (2019)

    ADS  Google Scholar 

  35. Z.B. Lin, W. Li, Y.Y. Yang, J.Z. He, Phys. Rev. E 101, 022117 (2020)

    ADS  Google Scholar 

  36. B. Sothmann, R. Sánchez, A.N. Jordan, Europhys. Lett. 107, 47003 (2014)

    ADS  Google Scholar 

  37. R. Sánchez, B. Sothmann, A.N. Jordan, Phys. Rev. Lett. 114, 146801 (2015)

    ADS  Google Scholar 

  38. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, I.W.A. Goddard, J.R. Heath, Nature 451, 168 (2008)

    ADS  Google Scholar 

  39. Y.Y. Yang, S. Xu, W. Li, J.Z. He, Phys. Scr. 95, 095001 (2020)

    ADS  Google Scholar 

  40. S. Xu, Y.Y. Yang, X. Liu, J.Z. He, Acta Phys. Sin. 71, 020501 (2022)

    Google Scholar 

  41. S. Su, Y. Zhang, J. Chen, T.M. Shih, Sci. Rep. 6, 21425 (2016)

    ADS  Google Scholar 

  42. S. Pal, C. Benjamin, J. Phys.: Condens. Matter 34, 305601 (2022)

    Google Scholar 

  43. R. Hussein, M. Governale, S. Kohler, W. Belzig, F. Giazotto, A. Braggio, Phys. Rev. B 99, 075429 (2019)

    ADS  Google Scholar 

  44. Z.C. Shi, J. Fu, W.F. Qin, J.Z. He, Chin. Phys. Lett. 34, 110501 (2017)

    ADS  Google Scholar 

  45. J.H. Jiang, O. Entin-Wohlman, Y. Imry, New J. Phys. 15, 075021 (2013)

    ADS  Google Scholar 

  46. C. Li, Y. Zhang, J. He, Chin. Phys. Lett. 30, 100501 (2013)

    ADS  Google Scholar 

  47. B. Rutten, M. Esposito, B. Cleuren, Phys. Rev. B 80, 235122 (2009)

    ADS  Google Scholar 

  48. B. Cleuren, B. Rutten, C. Van den Broeck, Phys. Rev. Lett. 108, 120603 (2012)

    ADS  Google Scholar 

  49. Z.C. Shi, J.Z. He, Y.L. Xiao, Sci. China Phys. Mech. Astronomy 45, 50502 (2015)

    ADS  Google Scholar 

  50. C. Li, Y. Zhang, J. Wang, J. He, Phys. Rev. E 88, 062120 (2013)

    ADS  Google Scholar 

  51. J.H. Wang, Y.M. Lai, Z.L. Ye, J.Z. He, Y.L. Ma, Q.H. Liang, Phys. Rev. E 91, 050102 (2015)

    ADS  Google Scholar 

  52. W. Li, J. Fu, Y.Y. Yang, J.Z. He, Acta Phys. Sin. 22, 220501 (2019)

    Google Scholar 

  53. D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, U. Banin, Science 332, 77 (2011)

    ADS  Google Scholar 

  54. W. Li, Y.Y. Yang, J. Fu, Z.B. Lin, J.Z. He, ES Energy Environment 7, 40 (2020)

    Google Scholar 

  55. P.A. Erdman, F. Mazza, R. Bosisio, G. Benenti, R. Fazio, F. Taddei, Phys. Rev. B 95, 245432 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation (Grant No. 11875034), People’s Republic of China.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Jizhou He.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gao, J. & He, J. A three-terminal heat engine based on resonant-tunneling multi-level quantum dots. Eur. Phys. J. B 96, 1 (2023). https://doi.org/10.1140/epjb/s10051-022-00470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00470-2

Navigation