Skip to main content
Log in

Two-parameter bifurcation and energy consumption analysis of the macro traffic flow model

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Bifurcation of traffic flow involves complex dynamic characteristics of the system. In order to understand the complex traffic phenomenon, this work designed a macro traffic model considering the driver’s memory which plays an important role in the traffic flow. Based on this model, we investigate the effects of the driver’s memory and wave velocity on the stability of the traffic flow. By means of one and two parameter bifurcation analysis, we explore how these parameters affect the bifurcation structure of the system, and further investigate the dynamic mechanisms of traffic flow. We explain various traffic phenomena related to the different types of equilibrium points and limit cycles by phase plane analysis. We also study how the initial density and bifurcation structure affect the energy consumption in the system. The results show that the driver’s memory and wave velocity play an important role in the stability of the traffic flow. By considering the change of bifurcation structure, we can better understand the source of traffic congestion, and further predict and control the possible traffic congestion.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. W. Pan, X.L. Chen, X.J. Duan, Energy dissipation and particulate emission at traffic bottleneck based on NaSch model. Eur. Phys. J. B 95, 105 (2022). https://doi.org/10.1140/epjb/s10051-022-00360-7

    Article  ADS  Google Scholar 

  2. D. Helbing, M. Moussaid, Analytical calculation of critical perturbation amplitudes and critical densities by non-linear stability analysis of a simple traffic flow model. Eur. Phys. J. B 69, 571–581 (2009). https://doi.org/10.1140/epjb/e2009-00042-6

    Article  ADS  Google Scholar 

  3. T.Q. Tang, J. He, Y.H. Wu, Propagating properties of traffic flow on a ring road without ramp. Phys. A 396, 164–172 (2014). https://doi.org/10.1016/j.physa.2013.11.019

    Article  MATH  Google Scholar 

  4. C. Gao, Y. Fan, S.H. Jiang, Y. Deng, J.M. Liu, X.H. Li, Dynamic robustness analysis of a two-layer rail transit network model. IEEE Trans. Intell. Transp. Syst. 23, 6509–6524 (2022). https://doi.org/10.1109/TITS.2021.3058185

    Article  Google Scholar 

  5. T. Nagatani, TDGL and MKDV equation for jamming transition in the lattice models of traffic. Phys. A 264, 581–592 (1999). https://doi.org/10.1016/S0378-4371(98)00466-X

    Article  Google Scholar 

  6. K.K. Huang, S. Li, P.L. Dai, Z. Wang, Z.F. Yu, SDARE: A stacked denoising autoencoder method for game dynamics network structure reconstruction. Neural Netw. 126, 143–152 (2020). https://doi.org/10.1016/j.neunet.2020.03.008

    Article  Google Scholar 

  7. K.K. Huang, Y.S. Liu, Y.C. Zhang, C.H. Yang, Z. Wang, Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks. Phys. A 509, 234–240 (2018). https://doi.org/10.1016/j.physa.2018.06.043

    Article  Google Scholar 

  8. Z. Wang, S. Kokubo, M. Jusup, J. Tanimoto, Universal scaling for the dilemma strength in evolutionary games. Phys. Life Rev. 14, 1–30 (2015). https://doi.org/10.1016/j.plrev.2015.04.033

    Article  ADS  Google Scholar 

  9. J.J. Ye, K.P. Li, X.M. Jin, Simulating train movement in an urban railway based on an improved car-following model. Chin. Phys. B 12, 65–69 (2013). https://doi.org/10.1088/1674-1056/22/12/120206

    Article  Google Scholar 

  10. R. Jiang, Q.S. Wu, Z.J. Zhu, Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001). https://doi.org/10.1103/PhysRevE.64.017101

    Article  ADS  Google Scholar 

  11. H.M. Zhang, Driver memory traffic viscosity and a viscous traffic flow model. Transp. Res. Part B 37, 27–41 (2003). https://doi.org/10.1016/S0191-2615(01)00043-1

    Article  Google Scholar 

  12. T.Q. Tang, H.J. Huang, S.G. Zhao, G. Xu, An extended OV model with consideration of driver’s memory. Int. J. Mod. Phys. B 23, 743–752 (2009). https://doi.org/10.1142/S0217979209051966

    Article  ADS  MATH  Google Scholar 

  13. B.G. Cao, A new car-following model considering driver’s sensory memory. Phys. A 427, 218–225 (2015). https://doi.org/10.1016/j.physa.2015.01.078

    Article  Google Scholar 

  14. Y.Q. Sun, H.X. Ge, R.J. Cheng, An extended car-following model considering drivers memory and average speed of preceding vehicles with control strategy. Phys. A 521, 752–761 (2019). https://doi.org/10.1016/j.physa.2019.01.092

    Article  MATH  Google Scholar 

  15. Z.P. Li, W.Z. Li, S.Z. Xu, Y.Q. Qian, Analyses of vehicle’s self-stabilizing effect in an extended optimal velocity model by utilizing historical velocity in an environment of intelligent transportation system. Nonlinear Dyn. 80, 529–540 (2015). https://doi.org/10.1007/s11071-014-1886-z

    Article  Google Scholar 

  16. W.X. Zhu, H.M. Zhang, Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model. Phys. A 496, 274–285 (2018). https://doi.org/10.1016/j.physa.2017.12.103

    Article  MATH  Google Scholar 

  17. Q.T. Zhai, H.X. Ge, R.J. Cheng, An extended continuum model considering optimal velocity change with memory and numerical tests. Phys. A 490, 774–785 (2018). https://doi.org/10.1016/j.physa.2017.08.152

    Article  MATH  Google Scholar 

  18. R.D. Kuhne, Macroscopic freeway model for dense traffic-stop-start waves and incident detection. International Symposium on Transportation and Traffic Theory 21-42 (1984)

  19. H.K. Lee, H.W. Lee, D. Kim, Steady-state solutions of hydrodynamic traffic models. Phys. Rev. E 69, 016118 (2004). https://doi.org/10.1103/PhysRevE.69.016118

    Article  ADS  Google Scholar 

  20. T. Li, Nonlinear dynamics of traffic jams. Phys. D 60, 550–556 (2007). https://doi.org/10.1016/j.physd.2005.05.011

    Article  Google Scholar 

  21. P. Saavedra, R.M. Velasco, Phase-space analysis for hydrodynamic traffic models. Phy. Rev. E 79, 066103 (2009). https://doi.org/10.1103/PhysRevE.79.066103

    Article  ADS  Google Scholar 

  22. F.A. Carrillo, J. Delgado, P. Saavedra, R.M. Velasco, F. Verduzco, Travling waves catastrophes and bifurcations in a generic second order traffic flow model. Int. J. Bifurcat. Chaos 23, 1350191 (2013). https://doi.org/10.1142/S0218127413501915

    Article  MATH  Google Scholar 

  23. B.S. Kerner, P. Konhauser, Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48, 2335–2338 (1993). https://doi.org/10.1103/PhysRevE.48.R2335

    Article  ADS  Google Scholar 

  24. J. Delgado, P. Saavedra, Global bifurcation diagram for the Kerner–Konhauser traffic flow model. Int. J. Bifurcat. Chaos 25, 1550064 (2015). https://doi.org/10.1142/S0218127415500649

    Article  MATH  Google Scholar 

  25. W.H. Ai, Z.K. Shi, D.W. Liu, Bifurcation analysis of a speed gradient continuum traffic flow model. Phys. A 437, 418–429 (2015). https://doi.org/10.1016/j.physa.2015.06.004

    Article  MATH  Google Scholar 

  26. W.R. Ren, R.J. Cheng, H.X. Ge, Bifurcation control in an optimal velocity model via double time-delay feedback method. IEEE Access 8, 216162 (2020). https://doi.org/10.1109/ACCESS.2020.3041794

    Article  Google Scholar 

  27. W. Ren, H.X. Ge, Bifurcation analysis for a novel heterogeneous continuum model considering electronic throttle angle changes with memory. Appl. Math. Comput. 401, 126079 (2021). https://doi.org/10.1016/j.amc.2021.126079

    Article  MATH  Google Scholar 

  28. W. Ren, H.X. Ge, Bifurcation analysis of a heterogeneous continuum traffic flow model. Appl. Math. Model. 94, 369–387 (2021). https://doi.org/10.1016/j.apm.2021.01.025

    Article  MATH  Google Scholar 

  29. Q.T. Zhai, H.X. Ge, R.J. Cheng, An extended continuum model considering optimal velocity change with memory and numerical tests. Phys. A 490, 774–785 (2018). https://doi.org/10.1016/j.physa.2017.08.152

    Article  MATH  Google Scholar 

  30. M. Herrmann, B.S. Kerner, Local cluster effect in different traffic flow models. Phys. A 255, 163–188 (1998). https://doi.org/10.1016/S0378-4371(98)00102-2

    Article  Google Scholar 

  31. X.Y. Guan, R.J. Cheng, H.X. Ge, Bifurcation control of optimal velocity model through anticipated effect and response time-delay feedback methods. Phys. A 574, 125972 (2021). https://doi.org/10.1007/s11071-014-1886-z

    Article  MATH  Google Scholar 

  32. T.Q. Tang, H.J. Huang, H.Y. Shang, An extended macro traffic flow accounting for the driver’s bounded rationality and numerical tests. Phys. A 468, 322–333 (2017). https://doi.org/10.1016/j.physa.2016.10.092

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11872003) and North China University of Technology Research Fund Program for Key Discipline (No. 110052972027/014).

Author information

Authors and Affiliations

Authors

Contributions

SF designed the study, carried out the computations, analyzed the results, and wrote the first draft. LD supervised the project, contributed to the mathematical formulation. DL and ZH contributed to analysis of the results.

Corresponding author

Correspondence to Lixia Duan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Fan, S., Liu, D. et al. Two-parameter bifurcation and energy consumption analysis of the macro traffic flow model. Eur. Phys. J. B 95, 203 (2022). https://doi.org/10.1140/epjb/s10051-022-00469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00469-9

Navigation