Skip to main content
Log in

Anomalous domain-wall freezing and ferroelectricity of KDP polycrystals under influence of nanocellulose filler

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

For the first time, a composite from polycrystals of KH2PO4 (KDP) with a filler of cellulose nanoparticles (CNP) was prepared to investigate the influence of cellulose on domain-wall freezing and ferroelectricity of KDP. The extrapolation of experimental data using Vogel–Fulcher law demonstrated a higher temperature of domain-wall freezing in KDP/CNP composite in comparison with pure KDP. In addition, the impact of CNP led to the expansion of ferroelectric phase in KDP and the red-shift of relaxation frequencies. Besides, the deformation of P–E hysteresis loops with the increase in coercive field as well as the decrease in saturated and remnant polarization was also detected.

Graphical abstract

Synthesis of KDP/CNP composite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The study provides initial results of electrophysical properties for the KDP/CNP composite, a deeper analysis of data is still in progress and will be reported with a dataset in next publications.]

References

  1. E.I. Moses, Advances in inertial confinement fusion at the National Ignition Facility (NIF). Fusion Eng. Des. 85, 983 (2010). https://doi.org/10.1016/j.fusengdes.2009.11.006

    Article  Google Scholar 

  2. Q. Wang, W. Cong, Z.J. Pei, H. Gao, R. Kang, Rotary ultrasonic machining of potassium dihydrogen phosphate (KDP) crystal: an experimental investigation on surface roughness. J. Manuf. Process. 11, 66 (2009). https://doi.org/10.1016/j.jmapro.2009.09.001

    Article  Google Scholar 

  3. K. Manimekalai, N. Padmamalini, G. Vinitha, P. Jayaprakash, Crystal growth and physico-chemical characterization of methyl ammonium chloride doping on the characteristics of potassium dihydrogen phosphate crystal for nonlinear optical applications. Inorg. Chem. Commun. 137, 109207 (2022). https://doi.org/10.1016/j.inoche.2022.109207

    Article  Google Scholar 

  4. Y. Wang, D. Sun, J. Chen, C. Shen, G. Liu, D. Wang, S. Wang, Linear and nonlinear optical characteristics effected by Na+ ions of low concentration for potassium dihydrogen phosphate crystal. Optik 251, 168481 (2022). https://doi.org/10.1016/j.ijleo.2021.168481

    Article  ADS  Google Scholar 

  5. A. Ciżman, T. Marciniszyn, E. Rysiakiewicz-Pasek, A. Sieradzki, T.V. Antropova, R. Poprawski, Size effects in KDP-porous glass ferroelectric nanocomposites. Phase Transit. 86, 910 (2013). https://doi.org/10.1080/01411594.2012.745537

    Article  Google Scholar 

  6. S.A. Hayward, M.C. Gallardo, E.K.H. Salje, Ferroelectric phase transition in DKDP: a macroscopic order-disorder model. Ferroelectrics 255, 123 (2001). https://doi.org/10.1080/00150190108225971

    Article  ADS  Google Scholar 

  7. N.I. Uskova, E.V. Charnaya, D.Y. Podorozhkin, S.V. Baryshnikov, A.Y. Milinskiy, Impact of opal nanoconfinement on the ferroelectric transition in deuterated KDP. Results Phys. 26, 104354 (2021). https://doi.org/10.1016/j.rinp.2021.104354

    Article  Google Scholar 

  8. H.T. Nguyen, M.T. Chau, Structural and dielectric studies of three-phase composite containing multiwalled carbon nanotubes, nanodispersed silica and KDP. Phase Transit. 93, 1080 (2020). https://doi.org/10.1080/01411594.2020.1839753

    Article  Google Scholar 

  9. H. Wang, Z. Li, M. Zuo, X. Zeng, X. Tang, Y. Sun, L. Lin, Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Carbohydr. Polym. 280, 119018 (2022). https://doi.org/10.1016/j.carbpol.2021.119018

    Article  Google Scholar 

  10. J. Kawahara, P. Andersson Ersman, X. Wang, G. Gustafsson, H. Granberg, M. Berggren, Reconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials. Org. Electron. 14, 3061 (2013). https://doi.org/10.1016/j.orgel.2013.07.013

    Article  Google Scholar 

  11. D. Belaineh, R. Brooke, N. Sani, M.G. Say, K.M.O. Håkansson, I. Engquist, M. Berggren, J. Edberg, Printable carbon-based supercapacitors reinforced with cellulose and conductive polymers. J. Energy Storage 50, 104224 (2022). https://doi.org/10.1016/j.est.2022.104224

    Article  Google Scholar 

  12. E. Nakamura, K. Kuramoto, K. Deguchi, K. Hayashi, Mechanism of domain freezing in KDP type ferroelectrics. Ferroelectrics 98, 51 (1989). https://doi.org/10.1080/00150198908217569

    Article  ADS  Google Scholar 

  13. Y.N. Huang, X. Li, Y. Ding, Y.N. Wang, H.M. Shen, Z.F. Zhang, C.S. Fang, S.H. Zhuo, P.C.W. Fung, Domain freezing in potassium dihydrogen phosphate, triglycine sulfate, and CuAlZnNi. Phys. Rev. B 55, 16159 (1997). https://doi.org/10.1103/PhysRevB.55.16159

    Article  ADS  Google Scholar 

  14. M.V. Talanov, A.A. Pavelko, L.S. Kamzina, Domain-wall freezing in Cd2Nb2O7 pyrochlore single crystal. Mater. Res. Bull. 145, 111548 (2022). https://doi.org/10.1016/j.materresbull.2021.111548

    Article  Google Scholar 

  15. N.I. Uskova, D.Y. Podorozhkin, E.V. Charnaya, S.V. Baryshnikov, A.Y. Milinskiy, D.Y. Nefedov, A.S. Bugaev, M.K. Lee, L.J. Chang, NMR and dielectric studies of ferroelectric nanocomposites with KDP. Ferroelectrics 514, 50 (2017). https://doi.org/10.1080/00150193.2017.1357980

    Article  ADS  Google Scholar 

  16. B.D. Mai, H.T. Nguyen, D.H. Ta, Effects of moisture on structure and electrophysical properties of a ferroelectric composite from nanoparticles of cellulose and triglycine sulfate. Braz. J. Phys. 49, 333 (2019). https://doi.org/10.1007/s13538-019-00658-5

    Article  ADS  Google Scholar 

  17. C. Shi, X.-B. Han, W. Zhang, Structural phase transition-associated dielectric transition and ferroelectricity in coordination compounds. Coord. Chem. Rev. 378, 561 (2019). https://doi.org/10.1016/j.ccr.2017.09.020

    Article  Google Scholar 

  18. E.V. Colla, A.V. Fokin, Y.A. Kumzerov, Ferroelectrics properties of nanosize KDP particles. Solid State Commun. 103, 127 (1997). https://doi.org/10.1016/S0038-1098(97)00132-4

    Article  ADS  Google Scholar 

  19. M. Trainer, Ferroelectrics the Curie–Weiss law. Eur. J. Phys. 21, 459 (2000). https://doi.org/10.1088/0143-0807/21/5/312

    Article  Google Scholar 

  20. R. Pirc, R. Blinc, Vogel–Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 76, 020101 (2007). https://doi.org/10.1103/PhysRevB.76.020101

    Article  ADS  Google Scholar 

  21. M. Ikeda, M. Aniya, Understanding the Vogel–Fulcher–Tammann law in terms of the bond strength–coordination number fluctuation model. J. Non Cryst. Solids 371–372, 53 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.04.034

    Article  ADS  Google Scholar 

  22. D.S. Bystrov, E.A. Popova, The molecular aspect of ferroelectricity in KDP crystals. Ferroelectrics 72, 147 (1987). https://doi.org/10.1080/00150198708017944

    Article  ADS  Google Scholar 

  23. B.A. Strukov, S.A. Taraskin, A.B. Suvkhanov, Defects and ferroelectric phase transitions. Ferroelectrics 124, 189 (1991). https://doi.org/10.1080/00150199108209436

    Article  ADS  Google Scholar 

  24. J.S. Zhu, K. Chen, W. Li, F. Yan, Y.R. Dai, X.M. Lu, Y.N. Wang, Mechanical and dielectric investigation on point defects and phase transition in ferroelectric ceramics. Mater. Sci. Eng. A 442, 49 (2006). https://doi.org/10.1016/j.msea.2006.04.139

    Article  Google Scholar 

  25. B.D. Mai, H.T. Nguyen, M.T. Chau, Effects of hydrogen bonds on dielectric relaxation of composites based on hydrogen-bonded ferroelectrics. Phase Transit. 93, 228 (2020). https://doi.org/10.1080/01411594.2019.1709122

    Article  Google Scholar 

  26. V.M. Rudyak, Dielectric viscosity and other properties of ferroelectrics. Ferroelectrics 35, 251 (1981). https://doi.org/10.1080/00150198108017701

    Article  ADS  Google Scholar 

  27. N.M. Galiyarova, Critical slowing down of relaxing domain walls and interfaces in phase transition vicinities. Ferroelectrics 170, 111 (1995). https://doi.org/10.1080/00150199508014197

    Article  ADS  Google Scholar 

  28. V.H. Schmidt, G. Bohannan, D. Arbogast, G. Tuthill, Domain wall freezing in KDP-type ferroelectrics. J. Phys. Chem. Solids 61, 283 (2000). https://doi.org/10.1016/S0022-3697(99)00294-2

    Article  ADS  Google Scholar 

  29. K. Abe, Optical and X-ray studies of domain formation in KH2PO4 crystal. J. Phys. Soc. Jpn. 56, 757 (1987). https://doi.org/10.1143/JPSJ.56.757

    Article  ADS  Google Scholar 

  30. A. Feisst, P. Koidl, Current induced periodic ferroelectric domain structures in LiNbO3 applied for efficient nonlinear optical frequency mixing. Appl. Phys. Lett. 47, 1125 (1985). https://doi.org/10.1063/1.96349

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai Thuong Nguyen.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T. Anomalous domain-wall freezing and ferroelectricity of KDP polycrystals under influence of nanocellulose filler. Eur. Phys. J. B 95, 196 (2022). https://doi.org/10.1140/epjb/s10051-022-00461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00461-3

Navigation