Skip to main content

Advertisement

Log in

Investigation of mechanical properties of KCaH3 and KSrH3 orthorhombic perovskite hydrides under high pressure for hydrogen storage applications

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

First principles calculations have been adopted to explore ground-state and high-pressure properties of KCaH3 and KSrH3 orthorhombic perovskite hydrides for the purpose of solid-state hydrogen storage. Formation enthalpies of materials, structural and mechanical properties, electronic and hydrogen storage properties are computed and examined. The computed formation enthalpies and phonon frequencies of KCaH3 and KSrH3 indicate dynamical stability at 0 GPa. The gravimetric hydrogen densities of KCaH3 and KSrH3 are found to be 3.55 wt% and 2.28 wt%, respectively. Also, the hydrogen desorption temperatures are calculated as 449 K and 394 K for KCaH3 and KSrH3. Elastic constants for each phase and several parameters derived from elastic constants are computed and evaluated, such as bulk and Shear modulus. The B/G ratios of materials depict that both KCaH3 and KSrH3 are brittle materials. The electronic properties show band gaps for both materials at 0 GPa, confirming an insulating nature and as pressure increases the band gap shrinks for KCaH3 and disappears for KSrH3.

Graphical abstract

Phase transitions of KCaH3 and KSrH3

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. M. Hirscher et al., Materials for hydrogen-based energy storage – past, recent progress and future outlook. J. Alloy. Compd. 827, 153548 (2020)

    Article  Google Scholar 

  2. A.G. Olabi et al., Large-scale hydrogen production and storage technologies: Current status and future directions. Int. J. Hydrogen Energy 46(45), 23498–23528 (2021)

    Article  Google Scholar 

  3. Irena, H., A renewable energy perspective. J IRENA, Abu Dhabi, 2019.

  4. V.A. Yartys et al., Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 44(15), 7809–7859 (2019)

    Article  Google Scholar 

  5. J.-C. Crivello et al., Review of magnesium hydride-based materials: development and optimisation. J Applied Physics A 122(2), 1–20 (2016)

    Article  Google Scholar 

  6. I.A. Hassan et al., Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renew. Sustain. Energy Rev. 149, 111311 (2021)

    Article  Google Scholar 

  7. D.A. Mosher et al., Design, fabrication and testing of NaAlH4 based hydrogen storage systems. J. Alloy. Compd. 446–447, 707–712 (2007)

    Article  Google Scholar 

  8. Y. Kojima, Hydrogen storage materials for hydrogen and energy carriers. Int. J. Hydrogen Energy 44(33), 18179–18192 (2019)

    Article  Google Scholar 

  9. G. Barkhordarian et al., Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J. Alloy. Compd. 440(1), L18–L21 (2007)

    Article  Google Scholar 

  10. P. Schouwink et al., Structure and properties of complex hydride perovskite materials. J Nature communications 5(1), 1–10 (2014)

    Google Scholar 

  11. Y. Li, J.S. Chung, S.G. Kang, First-Principles Computational Screening of Perovskite Hydrides for Hydrogen Release. J ACS combinatorial science 21(11), 736–742 (2019)

    Article  Google Scholar 

  12. H.H. Raza et al., Optoelectronic and thermal properties of LiXH3(X = Ba, Sr and Cs) for hydrogen storage materials: A first principle study. Solid State Commun. 299, 8 (2019)

    Article  Google Scholar 

  13. S. Al, C. Kurkcu, C. Yamcicier, High pressure phase transitions and physical properties of Li2MgH4; implications for hydrogen storage. Int. J. Hydrogen Energy 45(7), 4720–4730 (2020)

    Article  Google Scholar 

  14. H.H. Raza et al., First-principle investigation of XSrH3 (X = K and Rb) perovskite-type hydrides for hydrogen storage. Int. J. Quantum Chem. 120(24), e26419 (2020)

    Article  Google Scholar 

  15. S. Lamichhane et al., Structural and electronic properties of perovskite hydrides ACaH3 (A= Cs and Rb). J BIBECHANA 13, 94–99 (2016)

    Article  Google Scholar 

  16. 2022 [cited 2022 12.09.2022]; Available from: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles.

  17. Al, S., Investigations of Physical Properties of XTiH3 and Implications for Solid State Hydrogen Storage, in Zeitschrift für Naturforschung A. 2019. p. 1023.

  18. Manivasagam, T.G., et al., Synthesis and electrochemical properties of binary MgTi and ternary MgTiX (X= Ni, Si) hydrogen storage alloys. 2017. 42(37): p. 23404–23415.

  19. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43(3), 1993 (1991)

    Article  ADS  Google Scholar 

  20. P. Ordejón, E. Artacho, J.M. Soler, Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53(16), R10441 (1996)

    Article  ADS  Google Scholar 

  21. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Hundt et al., Determination of symmetries and idealized cell parameters for simulated structures. J. Appl. Crystallogr. 32(3), 413–416 (1999)

    Article  Google Scholar 

  23. A. Hannemann et al., A New Algorithm for Space-Group Determination. J. Appl. Crystallogr. 31(6), 922–928 (1998)

    Article  MathSciNet  Google Scholar 

  24. S. Al, C. Kurkcu, C. Yamcicier, Structural evolution, mechanical, electronic and vibrational properties of high capacity hydrogen storage TiH4. Int. J. Hydrogen Energy 45(55), 30783–30791 (2020)

    Article  Google Scholar 

  25. Q. Zeng et al., Evaluation of the Thermodynamic Data of CH3SiCl3 Based on Quantum Chemistry Calculations. J. Phys. Chem. Ref. Data 35(3), 1385–1390 (2006)

    Article  ADS  Google Scholar 

  26. C. Yamcicier, Z. Merdan, C. Kurkcu, Investigation of the structural and electronic properties of CdS under high pressure: an ab initio study. Can. J. Phys. 96(2), 216–224 (2017)

    Article  ADS  Google Scholar 

  27. C. Kürkçü et al., Investigation of structural and electronic properties of β-HgS: Molecular dynamics simulations. Chin. J. Phys. 56(3), 783–792 (2018)

    Article  Google Scholar 

  28. M. Durandurdu, Orthorhombic intermediate phases for the wurtzite-to-rocksalt phase transformation of CdSe: An ab initio constant pressure study. Chem. Phys. 369(2–3), 55–58 (2010)

    Article  Google Scholar 

  29. C. Kürkçü, Z. Merdan, H. Öztürk, Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study. Russ. J. Phys. Chem. A 90(13), 2550–2555 (2016)

    Article  Google Scholar 

  30. C. Kürkçü, Z. Merdan, H. Öztürk, Pressure-induced phase transitions and structural properties of CoF2: An ab-initio molecular dynamics study. Solid State Commun. 231, 17–25 (2016)

    Article  ADS  Google Scholar 

  31. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809 (1947)

    Article  ADS  MATH  Google Scholar 

  32. F. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. I.O.A. Ali, D.P. Joubert, M.S.H. Suleiman, A theoretical investigation of structural, mechanical, electronic and thermoelectric properties of orthorhombic CH3NH3PbI3. Eur. Phys. J. B 91(10), 263 (2018)

    Article  ADS  Google Scholar 

  34. R. Rahmani et al., Systematic study of elastic, electronic, and magnetic properties of lanthanum cobaltite oxide. J. Comput. Electron. 17(3), 920–925 (2018)

    Article  Google Scholar 

  35. S. Li, H. Quan, S. Yu, Structural, electronic, and elastic properties of orthorhombic NaB3H8: a first-principles investigation. Solid State Commun. 299, 113653 (2019)

    Article  Google Scholar 

  36. P.F. Weck, E. Kim, E.C. Buck, On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation. RSC Adv. 5(96), 79090–79097 (2015)

    Article  ADS  Google Scholar 

  37. M. Nan-Xi et al., Mechanical and thermodynamic properties of the monoclinic and orthorhombic phases of SiC2N4 under high pressure from first principles. Chin. Phys. B 23(12), 127101 (2014)

    Article  ADS  Google Scholar 

  38. S. Al et al., Lattice dynamic properties of Rh2 XAl (X= Fe and Y) alloys. Physica B 531, 16–20 (2018)

    Article  ADS  Google Scholar 

  39. P. Li et al., First-principles investigations on structural stability, elastic and electronic properties of Co7M6 (M= W, Mo, Nb) µ phases. Mol. Simul. 45(9), 752–758 (2019)

    Article  Google Scholar 

  40. Pugh, S.F., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine and Journal of Science, 1954. 45(367): p. 823–843.

  41. Bannikov, V.V., I.R. Shein, and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3. Physica status solidi (RRL) – Rapid Research Letters, 2007. 1(3): p. 89–91.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to Selgin Al.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurkcu, C., Al, S. & Yamcicier, C. Investigation of mechanical properties of KCaH3 and KSrH3 orthorhombic perovskite hydrides under high pressure for hydrogen storage applications. Eur. Phys. J. B 95, 180 (2022). https://doi.org/10.1140/epjb/s10051-022-00446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00446-2

Navigation