Skip to main content
Log in

Anisotropic study of ReSe2-based photodetector grown via vapour transport technique

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides (TMDCs) are extensively in demand as photodetectors due to their extraordinary electrical and optical properties. In this work, we have reported the synthesis of high-quality bulk single crystals of rhenium diselenide (ReSe2) by the DVT technique. X-ray diffraction, Raman spectroscopy, and elemental mapping confirmed the crystal structure, crystallinity, and phase singularity of the material. TEM and SEM confirm the crystallinity and layered structure of the grown material. Owing to these unique properties, we have utilized the ReSe2 crystal to construct a high-performance anisotropic photodetector. The crystals’ photodetection capacity was confirmed in terms of typical detector parameters such as responsivity, detectivity, and rise time for white light under different intensities, biasing voltages, and wavelengths. The anisotropy in the properties due to its unique layered structure is also explored here. Observing the encouraging results, ReSe2 is a potential choice in 2D TMDCs for electrical and optoelectronic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The datasets generated during the current study are available from the corresponding author on reasonable request. This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. Z. Yin, H.H. Li, H.H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74 (2012)

    Article  Google Scholar 

  2. A.B. Patel, H.K. Machhi, P. Chauhan, S. Narayan, V. Dixit, S.S. Soni, P.K. Jha, G.K. Solanki, K.D. Patel, V.M. Pathak, A.C.S. Appl, Mater. Interfaces 11, 4093 (2019)

    Article  Google Scholar 

  3. J. Pu, L.J. Li, T. Takenobu, Phys. Chem. Chem. Phys. 16, 14996 (2014)

    Article  Google Scholar 

  4. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J. Yan, D.F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F.M. Peeters, J. Wu, Nat. Commun. 5, 1 (2014)

    Article  ADS  Google Scholar 

  5. O.B. Aslan, D.A. Chenet, A.M. Van Der Zande, J.C. Hone, T.F. Heinz, ACS Photon. 3, 96 (2016)

    Article  Google Scholar 

  6. J. Wang, Y. Jiang, Opt. Express 25, 5206 (2017)

    Article  ADS  Google Scholar 

  7. A.J. Cho, S.D. Namgung, H. Kim, J.Y. Kwon, APL Mater. 5 (2017).

  8. A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmiy, Y.M. Azhniuk, V.M. Dzhagan, V.O. Yukhymchuk, M.Y. Valakh, Colloids Surfaces A Physicochem. Eng. Asp. 290, 304 (2006)

    Article  Google Scholar 

  9. D. Kannichankandy, P.M. Pataniya, V. Dhamecha, V.M. Pathak, G.K. Solanki, Curr. Appl. Phys. 39, 140 (2022)

    Article  ADS  Google Scholar 

  10. J.C. Wildervanck, F. Jellinek, J. Less-Common Met. 24, 73 (1971)

    Article  Google Scholar 

  11. H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, H. Wang, Nano Res. 8, 3651 (2015)

    Article  Google Scholar 

  12. S. Tongay, S. Yang, C. Wang, H. Sahin, H. Chen, S. Li, A. Suslu, F.M. Peeters, Q. Liu, J.Li, (2015)

  13. D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, J. Zhao, IEEE J. Sel. Top. Quantum Electron. 24 (2018)

  14. Y. Cui, F. Lu, X. Liu, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  15. M. Hafeez, L. Gan, A. Saleem Bhatti, T. Zhai, Mater. Chem. Front. 1, 1917 (2017)

    Article  Google Scholar 

  16. B. Jariwala, A. Thamizhavel, A. Bhattacharya, J. Phys. D. Appl. Phys. 50 (2017)

  17. E. Zhang, P. Wang, Z. Li, H. Wang, C. Song, C. Huang, Z.G. Chen, L. Yang, K. Zhang, S. Lu, W. Wang, S. Liu, H. Fang, X. Zhou, H. Yan, J. Zou, X. Wan, P. Zhou, W. Hu, F. Xiu, ACS Nano 10, 8067 (2016)

    Article  Google Scholar 

  18. J.V. Marzik, R. Kershaw, K. Dwight, A. Wold, J. Solid State Chem. 51, 170 (1984)

    Article  ADS  Google Scholar 

  19. P. Eickholt, J. Noky, E.F. Schwier, K. Shimada, K. Miyamoto, T. Okuda, C. Datzer, M. Drüppel, P. Krüger, M. Rohlfing, M. Donath, Phys. Rev. B 97, 1 (2018)

    Article  Google Scholar 

  20. M.H. Ali, D.H. Kang, J.H. Park, Org. Electron. 53, 14 (2018)

    Article  Google Scholar 

  21. S. Yang, S. Tongay, Q. Yue, Y. Li, B. Li, F. Lu, Sci. Rep. 4, 1 (2014)

    Article  Google Scholar 

  22. Y. Xia, J. Huang, W. Wu, Y. Zhang, H. Wang, J. Zhu, J. Yao, L. Xu, Y. Sun, L. Zhang, R. Lu, J. Xiong, G. Zou, ChemCatChem 10, 4424 (2018)

    Article  Google Scholar 

  23. A. Taube, A. Łapińska, J. Judek, M. Zdrojek, Appl. Phys. Lett. 107 (2015)

  24. S. Zhu, W. Zheng, J. Phys. Chem. Lett. 12, 5261 (2021)

    Article  Google Scholar 

  25. B. Silva, J. Rodrigues, B. Sompalle, C. Da Liao, N. Nicoara, J. Borme, F. Cerqueira, M. Claro, S. Sadewasser, P. Alpuim, A. Capasso, Nanomaterials 11, 1 (2021)

    Google Scholar 

  26. V. Urbanová, N. Antonatos, J. Plutnar, P. Lazar, J. Michalička, M. Otyepka, Z. Sofer, M. Pumera, ACS Nano 15, 2374 (2021)

    Article  Google Scholar 

  27. M. Wu, J. Yang, D.H.L. Ng, J. Ma, Phys. Status Solidi Rapid Res. Lett. 13, 1 (2019)

    Google Scholar 

  28. H. Patel, K. Patel, A. Patel, H. Jagani, K.D. Patel, G.K. Solanki, V.M. Pathak, J. Electron. Mater. (2021)

  29. S. Krishna, A. Sharma, N. Aggarwal, S. Husale, G. Gupta, Sol. Energy Mater. Sol. Cells 172, 376 (2017)

    Article  Google Scholar 

  30. P. Chauhan, G.K. Solanki, A.B. Patel, K. Patel, P. Pataniya, S. Narayan, K.D. Patel, P.K. Jha, V.M. Pathak, Sol. Energy Mater. Sol. Cells 200, 109936 (2019)

    Article  Google Scholar 

  31. C. Limberkar, A. Patel, K. Patel, S. Nair, J. Joy, K.D. Patel, G.K. Solanki, V.M. Pathak, J. Alloys Compd. 846, 156391 (2020)

    Article  Google Scholar 

  32. A.B. Patel, P. Chauhan, K. Patel, C.K. Sumesh, S. Narayan, K.D. Patel, G.K. Solanki, V.M. Pathak, P.K. Jha, V. Patel, A.C.S. Sustain, Chem. Eng. 8, 4809 (2020)

    Google Scholar 

  33. Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S.J. Han, H. Wang, Q. Xia, T.P. Ma, T. Mueller, F. Xia, Nano Lett. 16, 4648 (2016)

    Article  ADS  Google Scholar 

  34. M. Yamamoto, K. Ueno, K. Tsukagoshi, Appl. Phys. Lett. 112 (2018)

  35. J. Kim, K. Heo, D.H. Kang, C. Shin, S. Lee, H.Y. Yu, J.H. Park, Adv. Sci. 6 (2019)

  36. P. Chauhan, A.B. Patel, G.K. Solanki, K.D. Patel, V.M. Pathak, C.K. Sumesh, S. Narayan, P.K. Jha, Appl. Surf. Sci. 536, 147739 (2021)

    Article  Google Scholar 

  37. M. Hafeez, L. Gan, H. Li, Y. Ma, T. Zhai, 1 (2016)

  38. B. Silva, B. Sompalle, C. Liao, N. Nicoara, F. Cerqueira, M. Claro, S. Sadewasser, P. Alpuim, A. Capasso, 1 (2021)

  39. (n.d.)

  40. W. Choi, M.Y. Cho, A. Konar, J.H. Lee, G. Cha, S.C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, S. Kim (2012)

  41. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, Nat. Commun. 1 (2011)

  42. C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, Mater. Lett. 221, 35 (2018)

    Article  Google Scholar 

  43. C.U. Vyas, P. Pataniya, C.K. Zankat, A.B. Patel, V.M. Pathak, K.D. Patel, G.K. Solanki, AIP Conf. Proc. 1961 (2018)

Download references

Acknowledgements

This work was financially supported by SHODH—Scheme of Developing High-Quality Research (Student Ref No: 201901640008). A part of the research work (characterization) was carried at the SICART (Vallabh Vidyanagar). The support in analysis work was received from Chaitanya Limberker, the authors are also thankful to Prof. M. P. Deshpande, Department of Physics, Sardar Patel University for providing the Raman facility for this work.

Author information

Authors and Affiliations

Authors

Contributions

Every author makes a contribution to the research and preparation of the manuscript. HP: conceptualization, investigation, formal analysis and writing—original draft. PC: investigation, methodology, review and editing. ABP: investigation and methodology. KDP: resources, project administration and supervision.

Corresponding authors

Correspondence to Hetal Patel or K. D. Patel.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1092 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, H., Chauhan, P., Patel, A.B. et al. Anisotropic study of ReSe2-based photodetector grown via vapour transport technique. Eur. Phys. J. B 95, 181 (2022). https://doi.org/10.1140/epjb/s10051-022-00439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00439-1

Navigation