Skip to main content
Log in

Josephson junction based on high critical-temperature superconductors: analysis, microcontroller implementation, and suppression of coexisting and chaotic attractors

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A Josephson junction (JJ) based on high critical-temperature superconductors described by a linear resistive–capacitive–inductance shunted junction (LRCLSJ) model with unharmonic current-phase relation (UCPR) is theoretically and experimentally investigated in this paper. The numerical simulations indicate that JJ based on high critical-temperature superconductors exhibits excitable mode, regular spiking, periodic bursting, relaxation oscillations, chaotic attractors, and coexisting attractors. The theoretical investigations are verified experimentally through the microcontroller implementation. In addition, the coexistence between chaotic and limit cycle attractors found in JJ based on high critical-temperature superconductors is controlled to the desired trajectory using the linear augmentation control method. Finally, analytical calculations and numerical simulations are carried out to show the serviceableness of the two designed single controllers in suppressing chaos in JJ based on high critical-temperature superconductors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: One can make a reasonable request to the corresponding author in case of the need for data in the present study. Furthermore, all the data can be readily generated using open-source code, by making use of the parameters listed in the text.]

References

  1. B.D. Josephson, Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962)

    Article  ADS  MATH  Google Scholar 

  2. S. Shapiro, Josephson currents in Superconducting tunneling: the effect of microwaves and other observations. Phys. Rev. Lett. 11, 80–82 (1963)

    Article  ADS  Google Scholar 

  3. J.Y. Tjalling, Historical development of the Newton–Raphson. Soc. Ind. Appl. Math. 37, 531–551 (1996)

    MathSciNet  MATH  Google Scholar 

  4. S.T. Kingni, G.F. Kuiate, V.K. Tamba, A.V. Monwanou, J.B.C. Orou, Analysis of a fractal josephson junction with unharmonic current-phase relation. J. Supercond. Novel Magn. 32, 2295–2301 (2019)

    Article  Google Scholar 

  5. S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek, J.A. Katine, Mutual phase-locking of microwave spin-torque nano-oscillators. Nature 437, 389–392 (2005)

    Article  ADS  Google Scholar 

  6. K. Rajagopal, A. Bayani, A.J.M. Khalaf, H. Namazi, S. Jafari, V.-T. Pham, A no-equilibrium memristive system with four-wing hyperchaotic attractor. AEU Int. J. Electron. Commun. 95, 207–215 (2018)

    Article  Google Scholar 

  7. K. Rajagopal, A. Akgul, S. Jafari, B. Aricioglu, A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications. Nonlinear Dyn. 91, 957–974 (2018)

    Article  Google Scholar 

  8. K. Rajagopal, S. Jafari, A. Karthikeyan, A. Srinivasan, B. Ayele, Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circ. Syst. Signal Process. 37, 3702–3724 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Sundarapandian, R. Karthikeyan, Anti-synchronization of Lu and Pan chaotic systems by adaptive nonlinear control. Int. J. Soft Comput. 6, 111–118 (2011)

    Article  Google Scholar 

  10. P. Prakash, K. Rajagopal, J.P. Singh, B.K. Roy, Megastability in a quasi-periodically forced system exhibiting multistability, quasi-periodic behaviour, and its analogue circuit simulation. AEU Int. J. Electron. Commun. 92, 111–115 (2018)

    Article  Google Scholar 

  11. K.K. Likharev, Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979)

    Article  ADS  Google Scholar 

  12. K. K. Likharev, Dynamics of Josephson junctions and circuits (5th edition). Gordon and Breach Science publishers (1986).

  13. M.H.S. Amin, A. Smirnov, A. Zagoskin, S. Lindstrom, T. Charlebois, T. Claeson, A. Tzalenchhuk, Silent phase qubit based on d-wave Josephson junction. Phys. Rev. B 71, 064516 (2005)

    Article  ADS  Google Scholar 

  14. S.K. Dana, D.C. Sengupta, K.D. Edoh, Chaotic dynamics in Josephson junction. IEEE Trans. Circ. Syst. I(48), 990–996 (2006)

    Google Scholar 

  15. E. Demler, A.J. Berlinsky, C. Kallin, G.B. Arnold, M.R. Beasley, Proximity effect and josephson coupling in the SO(5) theory of high-Tc superconductivity. Phys. Rev. Lett. 80, 2917–2920 (1998)

    Article  ADS  Google Scholar 

  16. D. Hertog, A.J. Berlinsky, C. Kallin, Properties of superconductor-antiferromagnet-superconductor Josephson junctions in SO (5) theory. Phys. Rev. B 59, R11645–R11648 (1999)

    Article  ADS  Google Scholar 

  17. S. Kashiwaya, Y. Tanaka, Tunnelling effects on surface-bound states in unconventional superconductors. Rep. Prog. Phys. 63, 1641–1724 (2000)

    Article  ADS  Google Scholar 

  18. E. Il’ichev, V. Zakosarenko, R. P. J.I. Jsselsteijn, H. E.Hoenig, V. Schultze, H. G. Meyer, & R. Hlubina, Anomalous periodicity of the current-phase relationship of grain-boundary Josephson junctions in high-(formula presented) superconductors. Phys. Rev. B 60, 3096–3099 (1999)

  19. G. Testa, E. Sarnelli, A. Monaco, E. Esposito, M. Ejrnaes, D.-J. Kang, M.G. Blamire, A class of high-Tc yba2cu3o7−x grain boundary junctions with high-icon products. Phys. Rev. B 71, 7–9 (2005)

    Google Scholar 

  20. E. Goldobin, D. Koelle, R. Kleiner, A. Buzdin, Josephson junctions with second harmonic in the current-phase relation: properties of φ junctions. Phys. Rev. B 76, 224–523 (2007)

    Article  Google Scholar 

  21. S.K. Dana, D.C. Sengupta, K.D. Edoh, Chaotic dynamics in Josephson junction. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 48, 990–996 (2001)

    Article  Google Scholar 

  22. A.B. Cawthorne, C.B. Whan, C.J. Lobb, Complex dynamics of resistively and inductively shunted Josephson junctions. J. Appl. Phys. 84, 1126–1132 (1998)

    Article  ADS  Google Scholar 

  23. C.B. Whan, C.J. Lobb, Complex dynamical behavior in RCL-shunted Josephson tunnel junctions. Phys. Rev. E 53, 405–413 (1996)

    Article  ADS  Google Scholar 

  24. X.S. Yang, Q. Li, A computer-assisted proof of chaos in Josephson junctions. Chaos Solit. Fract. 27, 25–30 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S.T. Kingni, G.F. Kuiate, R. Kengne, R. Tchitnga, P. Woafo, Analysis of a no equilibrium linear resistive-capacitive-inductance shunted junction model, dynamics, synchronization and application to digital cryptography in its fractional-order form. Hindawi-Complexity 4107358, 1–12 (2017). https://doi.org/10.1155/2017/4107358

    Article  MATH  Google Scholar 

  26. E. Neumann, A. Pikovsky, Slow-fast dynamics in Josephson junctions. Eur. Phys. J. B 34, 293–303 (2003)

    Article  ADS  Google Scholar 

  27. U.E. Vincent, A. Ucar, J.A. Laoye, S.O. Kareem, Control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design. Phys. C 468, 374–382 (2008)

    Article  ADS  Google Scholar 

  28. R. Jsselsteijn, R. P. Hoenig, H. E., M. Y. Kupriyanov, Degenerate ground state in a mesoscopic YBa2Cu3O7-x grain boundary Josephson junction. Phys. Rev. Lett., 86, 5369–5372 (2001)

  29. Y.S. Barash, Interfacial pair breaking and planar weak links with an anharmonic current-phase relation. JETP Lett. 100, 205–215 (2014)

    Article  Google Scholar 

  30. G. A. Gogadze, A. N. Omel’yanchuk, Current-phase dependences of superconducting superlattices. FizikaNizkikh Temperature, 28, 648–650 (1996)

  31. A.A. Golubov, M.Y. Kupriyanov, The current-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411–469 (2004)

    Article  ADS  Google Scholar 

  32. M. Canturk, I.N. Askerzade, Numerical study of I–V characteristics of externally shunted Josephson junctions with unharmonic current-phase relation. IEEE Trans. Appl. Supercond. 22, 1400106 (2012)

    Article  ADS  Google Scholar 

  33. M. Canturk, I.N. Askerzade, Chaotic dynamics of externally shunted Josephson junction with unharmonic CPR. J. Supercond. Novel Magn. 26, 839–843 (2013)

    Article  Google Scholar 

  34. I.K. Ngongiah, B. Ramakrishnan, Z.T. Njitacke, G.F. Kuiate, S.T. Kingni, Resistive-capacitive shunted Josephson junction with unharmonic current-phase relation: analysis and microcontroller implementation. Phys. A Stat. Mech. Appl. 603, 127757–127810 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Ramakrishnan, L.M.A. Tabejieu, I.K. Ngongiah, S.T. Kingni, R.T. Siewe, K. Rajagopal, Suppressing chaos in josephson junction model with coexisting attractors and investigating its collective behavior in a network. J. Supercond. Novel Magn. 34, 2761–2769 (2021)

    Article  Google Scholar 

  36. H. Yu, J. Wang, B., K. M. Tsang, Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation. Commun. Nonlinear Sci. Numer. Simul. 17, 1344–1354 (2012)

  37. C. Hu, J. Yu, Generalized intermittent control and its adaptive strategy on stabilization and synchronization of chaotic systems. Chaos Solit. Fract. 91, 262–269 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. J.P. Singh, B.K. Roy, Hidden attractors in a new complex generalised Lorenz hyperchaotic system, its synchronisation using adaptive contraction theory, circuit validation and application. Nonlinear Dyn. 92, 373–394 (2018)

    Article  MATH  Google Scholar 

  39. J.P. Singh, B.K. Roy, Second order adaptive time varying sliding mode control for synchronization of hidden chaotic orbits in a new uncertain 4-D conservative chaotic system. Trans. Inst. Meas. Control. 40, 3573–3586 (2018)

    Article  Google Scholar 

  40. J.P. Singh, J. Koley, A. Akgul, B. Gurevin, B.K. Roy, A new chaotic oscillator containing generalised memristor, single op-amp and RLC with chaos suppression and an application for the random number generation. Eur. Phys. J. Spec. Top. 228, 2233–2245 (2019)

    Article  Google Scholar 

  41. K. Lochan, J. P. Singh, B. K. Roy, B. Subudhi, Hidden chaotic path planning and control of a two-link flexible robot manipulator. In: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors. Springer, Cham, 433–463 (2018).

  42. J.P. Singh, K. Lochan, N.V. Kuznetsov, B.K. Roy, Coexistence of single-and multi-scroll chaotic orbits in a single-link flexible joint robot manipulator with stable spiral and index-4 spiral repellor types of equilibria. Nonlinear Dyn. 90, 1277–1299 (2017)

    Article  Google Scholar 

  43. J.P. Singh, B.K. Roy, N.V. Kuznetsov, Multistability and hidden attractors in the dynamics of permanent magnet synchronous motor. Int. J. Bifurcat. Chaos 29, 1950056–1950117 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. J.P. Singh, J. Koley, K. Lochan, B.K. Roy, Presence of megastability and infinitely many equilibria in a periodically and quasi-periodically excited single-link manipulator. Int. J. Bifurcat. Chaos 31, 2130005–2130009 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Canturk, I.N. Askerzade, Numerical study of Josephson junction qubits with an unharmonic current-phase relation. IEEE Trans. Appl. Supercond. 21, 3541–3547 (2011)

    Article  ADS  Google Scholar 

  46. S.T. Kingni, K. Rajagopal, S. Çiçek, A. Cheukem, V.K. Tamba, G.F. Kuiate, Dynamical analysis, FPGA implementation and its application to chaos based random number generator of a fractal Josephson junction with unharmonic current-phase relation. Eur. Phys. J. B 93, 44 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  47. S.T. Kingni, G.F. Kuiate, V.K. Tamba, A.V. Monwanou, J. Bio, C. Orou, Analysis of a fractal josephson junction with unharmonic current-phase relation. J. Supercond. Nov. Magn. 32, 2295–2301 (2019)

    Article  Google Scholar 

  48. A.N. Pisarchik, U. Feudel, Control of multistability. Phys. Rep. 540, 167–218 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. P.R. Sharma, M.D. Shrimali, A. Prasad, U. Feudel, Controlling bistability by linear augmentation. Phys. Lett. A 377, 2329–2332 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  50. P.R. Sharma, M.D. Shrimali, A. Prasad, N.V. Kuznetsov, G.A. Leonov, Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224, 1485–1491 (2015)

    Article  Google Scholar 

  51. T. V. Kamdoum, H. B. Fotsin, Multistability and its control in a simple chaotic circuit with a pair of light-emitting diodes. Cybern. Phys., 6, 114–120 (2017).

  52. A. Iqbal, G. K. Singh, Chaos control of permanent magnet synchronous motor using simple controllers. Trans. Inst. Measur. Control 41, 2352–2364 (2019)

  53. A. Cheukem, A. S. K. Tsafack, S. T. Kingni, A. C. Chamgoué, J. R. Mboupda Pone, Permanent magnet synchronous motor: chaos control using single controller, synchronization and circuit implementation, SN Appl. Sci. 2, 420–430 (2020)

  54. A. S. K. Tsafack, C. Ainamon, A. Cheukem, S. T. Kingni, J. R. Mboupda Pone, G. Kenne, Control of coexisting and chaotic attractors in brushless direct current motor. J. Control Automat. Elect. Syst. 32, 472–481 (2021)

Download references

Acknowledgements

This work is partially funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India via funding number CIT/CNS/2021/RD/064.

Author information

Authors and Affiliations

Authors

Contributions

IKN and BR proposed the circuit under study and theoretically analyzed the rate equations describing the circuit under study. JRMP and HN did the microcontroller implementation of the circuit under study. HN and GFK participated in the data analysis at different stages. All authors contributed to the interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to Justin Roger Mboupda Pone.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngongiah, I.K., Ramakrishnan, B., Natiq, H. et al. Josephson junction based on high critical-temperature superconductors: analysis, microcontroller implementation, and suppression of coexisting and chaotic attractors. Eur. Phys. J. B 95, 153 (2022). https://doi.org/10.1140/epjb/s10051-022-00413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00413-x

Navigation