Skip to main content
Log in

Analytic study of electrical, thermal and thermoelectric properties of ultra-thin \( \mathrm{In}_{{ x}}\mathrm{Ga}_{{ 1-x}}\mathrm{N} \) nanowires

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The doping density, temperature, wire thickness, indium content, and surface roughness effects on electronic, thermal, and thermoelectric transport coefficients of ultra-thin InGaN/GaN nanowires are investigated by applying the analytic procedure to polar semiconductors where piezoelectric effect and polar optical phonon scatterings also play significant roles. We calculate the low-field electron mobility, electronic Seebeck coefficient, and lattice thermal conductivity based on relaxation time approximation within linear response theory and Boltzmann transport equation. The dispersion of longitudinal acoustic phonons and the corresponding group velocities in \( \mathrm{In}_{x}\mathrm{Ga}_{1-x}\mathrm{N} \) nanowires are determined by applying the xyz-algorithm. The highest room temperature \( \mathrm{ZT} = 0.25 \) is achieved for 4-nm-thick nanowire that is an order of magnitude larger than the bulk ZT value of 0.02 and the ZT value of the same \( \mathrm{In}_{0.1}\mathrm{Ga}_{0.9}\mathrm{N} \) nanowire at \(T = 800 \, \mathrm{K} \) reaches a magnitude of 0.55. The effect of nanostructuring is found to be more pronounced than alloying.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during the current study are not publicly available due to the large number of written codes, but are available from the corresponding author on reasonable request. This manuscript has associated data in a data repository. [Authors’ comment: The codes may be provided upon reasonable request sent to mousavisoulmaz@gmail.com.]

References

  1. G. Mahan, B. Sales, J. Sharp, Phys. Today 50, 42 (1997)

    Google Scholar 

  2. T.M. Tritt, Science 283, 804 (1999)

    Google Scholar 

  3. G. Chen, A. Shakouri, Trans. ASME 124, 244 (2002)

    Google Scholar 

  4. A.K. Menon, S.K. Yee, J. Appl. Phys. 119, 055501 (2016)

    ADS  Google Scholar 

  5. A.K. Menon, O. Meek, A.J. Eng, S.K. Yee, J. Appl. Polym. Sci. 134, 44060 (2017)

    Google Scholar 

  6. K. Gordiz, Ak. Menon, S.K. Yee, J. Appl. Phys. 122, 124507 (2017)

    ADS  Google Scholar 

  7. K. Nan, S.D. Kang, K. Li, K.J. Yu, F. Zhu, J. Wang, A.C. Dunn, C. Zhou, Z. Xie, M.T. Agne, H. Wang, H. Luan, Y. Zhang, Y. Huang, G.J. Snyder, J.A. Rogers, Sci. Adv. 4, eaau5849 (2018)

    ADS  Google Scholar 

  8. L.K. Allison, T.L. Andrew, Adv. Mater. Technol. 0, 1800615 (2019)

  9. H.M. Elmoughni, A.K. Menon, R.M.W. Wolfe, S.K. Yee, Adv. Mater. Technol. 0, 1800708 (2019)

  10. S. Mousavi, S. Davatolhagh, M. Moradi, Phys. E. 118, 113889 (2020)

    Google Scholar 

  11. B. Pantha, R. Dahal, J. Li, J. Lin, H. Jiang, G. Pomrenke, J. Electron. Mater. 38, 1132 (2009)

    ADS  Google Scholar 

  12. S.H. Lee, S.H. Kim, Y.H. Song, S.R. Jeon, J.S. Yu, Jpn. J. Appl. Phys. 52, 102102 (2013)

    ADS  Google Scholar 

  13. M.R. Philip, D.D. Choudhary, M. Djavid, K.Q. Le, J. Piao, H.P.T. Nguyen, J. Sci, Adv. Mater. Dev. 2, 150 (2017)

    Google Scholar 

  14. M. Asad, R. Wang, Y.H. Ra, P. Gavirneni, Z. Mi, W.S. Wong, npj Flex. Electron. 3, 16 (2019)

    Google Scholar 

  15. J. Zhang, N. Tansu, IEEE Photon. J. 5, 2600111 (2013)

    ADS  Google Scholar 

  16. Z.C. Su, Z.L. Wang, J.D. Yu, Y. Yi, M.Z. Wang, L. Wang, Y. Luo, J.N. Wang, S.J. Xu, J. Phys. Chem. C. 121, 22523 (2017)

    Google Scholar 

  17. S.L. Howell, S. Padalkar, K. Yoon, Q. Li, D.D. Koleske, J.J. Wierer, G.T. Wang, L.J. Lauhon, Nano Lett. 13, 5123 (2013)

    ADS  Google Scholar 

  18. P. Nath, A. Biswas, V. Nath, Microsyst. Technol. 27, 301 (2020)

    Google Scholar 

  19. W.H. Liu, Y. Qu, S.L. Ban, J. Appl. Phys. 122, 115104 (2017)

    ADS  Google Scholar 

  20. Z. Yarar, B. Ozdemir, M. Ozdemir, J. Electron. Mater. 36, 1303 (2007)

    ADS  Google Scholar 

  21. A. Sztein, J. Haberstroh, J.E. Bowers, S.P. DenBaars, S. Nakamura, J. Appl. Phys. 113, 183707 (2013)

    ADS  Google Scholar 

  22. B.N. Pantha, R. Dahal, J. Li, J.Y. Lin, H.X. Jianga, Appl. Phys. Lett. 92, 042112 (2008)

    ADS  Google Scholar 

  23. C.W. Wu, Y.R. Wu, J. Appl. Phys. 116, 103707 (2014)

    ADS  Google Scholar 

  24. A. Sztein, H. Ohta, J.E. Bowers, S.P. Denbaars, S. Nakamura, J. Appl. Phys. 110, 123709 (2011)

    ADS  Google Scholar 

  25. A.H. Davoody, E.B. Ramayya, L.N. Maurer, I. Knezevic, Phys. Rev. B 89, 115313 (2014)

    ADS  Google Scholar 

  26. G. Bastard, Phys. Rev. B 24, 4714 (1981)

    ADS  Google Scholar 

  27. E.B. Ramayya, D. Vasileska, S.M. Goodnick, I. Knezevic, J. Appl. Phys. 104, 063711 (2008)

    ADS  Google Scholar 

  28. B.E. Foutz, S.K. Oleary, M.S. Shur, J. Appl. Phys. 85, 7727 (1999)

    ADS  Google Scholar 

  29. H. Morkoc, Handbook of Nitride Semiconductors and Devices, vol. I–III (Wiley VHC, Weinheim, 2008)

    Google Scholar 

  30. S. Jin, M.V. Fischetti, T.W. Tang, IEEE Trans. Electron Dev. 54, 2191 (2007)

    ADS  Google Scholar 

  31. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    ADS  Google Scholar 

  32. S. Yamakawa, R. Akis, N. Faralli, M. Saraniti, J. Phys. Condens. Matter 21, 174206 (2009)

    ADS  Google Scholar 

  33. K. Aryal, I.W. Feng, B.N. Pantha, J. Li, J.Y. Lin, H.X. Jiang, Mater. Res. Soc. Symp. Proc. 1325, 41 (2011)

    Google Scholar 

  34. H.H. Huang, I.L. Lu, Y.R. Wu, Phys. Status Solidi A. 7, 1562 (2011)

    ADS  Google Scholar 

  35. E.P. Pokatilov, D.L. Nika, A.A. Balandin, Phys. Rev. B 72, 113311 (2005)

    ADS  Google Scholar 

  36. E.P. Pokatilov, D.L. Nika, A.A. Balandin, Superlatt. Microstruct. 38, 168 (2005)

    ADS  Google Scholar 

  37. N. Nishiguchi, Y. Ando, M.N. Wybourne, J. Phys. Condens. Matter 9, 5751 (1997)

    ADS  Google Scholar 

  38. X. Lu, J.H. Chu, J. Appl. Phys. 93, 1219 (2003)

    ADS  Google Scholar 

  39. P. G. Klemens, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1958), Vol. 7, P1

  40. M. Asheghi, K. Kurabayashi, R. Kasnavi, K. Goodson, J. Appl. Phys. 91, 5079 (2002)

    ADS  Google Scholar 

  41. G.A. Slack, S. Galginaitis, Phys. Rev. A 253, 133 (1964)

    Google Scholar 

  42. J. Zou, A. Balandin, J. Appl. Phys. 89, 2932 (2001)

    ADS  Google Scholar 

  43. M. Kazan, G. Guisbiers, S. Pereira, M.R. Correia, P. Masri, J. Appl. Phys. 107, 083503 (2010)

    ADS  Google Scholar 

  44. J. Ma, W. Li, X. Luo, J. Appl. Phys. 119, 125702 (2016)

    ADS  Google Scholar 

  45. T. Tong, D. Fu, A.X. Levander, W.J. Schaff, B.N. Pantha, N. Lu, B. Liu, I. Ferguson, R. Zhang, J.Y. Lin, H.X. Jiang, J. Wu, D.G. Cahill, Appl. Phys. Lett. 102, 121906 (2013)

    ADS  Google Scholar 

  46. A. H. Davoody, Thermoelectric Properties of Ultrascaled GaN Nanowires. M. Sc thesis, Department of Electrical and Computer Engineering, University of Wisconsin-Madison (2011)

  47. E.B. Ramayya, L.N. Maurer, A.H. Davoody, I. Knezevic, Phys. Rev. B 86, 115328 (2012)

    ADS  Google Scholar 

  48. A. Sztein, H. Ohta, J. Sonoda, A. Ramu, J.E. Bowers, S.P. DenBaars, S. Nakamura, Appl. Phys. Express 2, 111003 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made a substantial contribution to the preparation of this manuscript. They have read and approved the final version of it.

Corresponding author

Correspondence to S. Davatolhagh.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S., Davatolhagh, S. & Moradi, M. Analytic study of electrical, thermal and thermoelectric properties of ultra-thin \( \mathrm{In}_{{ x}}\mathrm{Ga}_{{ 1-x}}\mathrm{N} \) nanowires. Eur. Phys. J. B 95, 160 (2022). https://doi.org/10.1140/epjb/s10051-022-00408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00408-8

Navigation