Skip to main content
Log in

Near-field radiative heat transfer in the three-body system made of nanoporous silicon carbide

  • Regular Article-Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Near-field radiative heat transfer between two nanoporous silicon carbide (SiC) can be remarkably enhanced by inserting an intermediate body with finite thickness. The heat flux of the proposed system is enhanced significantly comparing with that of the two-body counterpart, because the intermediate body which behaves like a midrepeater can assist the transfer of the surface phonon polaritons (SPhPs) and hyperbolic phonon polaritons (HPPs). Both the filling fraction of air in the nanoporous SiC and the thickness of the intermediate body play important roles to the radiative heat flux. The heat flux experiences a first increase and then decrease process for the fixed filling fraction as the thickness of the intermediate body increases, and it can reach a maximum value. The maximum heat flux shifts toward larger thickness of intermediate body when the filling fraction increases. The dependence of heat flux on filling fraction is also studied in detail. The results obtained in this work provide an efficient way to further enhance the near-field radiative heat transfer.

Graphical abstract

(a) The heat fluxes of the three-body system and the corresponding two-body counterpart as a function of the vacuum gaps. The thickness of the body 2 is \(\delta = 30\) nm and the filling fractions for both three-body and two-body systems are fixed at \(f = 0.3\). It is seen that the heat flux in the three-body system enhanced remarkably compared with its two-body counterpart. (b) The dependence of heat fluxes on vacuum gaps \(d_{1}\) and \(d_{2}\) for different filling fractions. The heat flux can be modulated by filling fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: this is a theoretical study and no experimental data.]

References

  1. A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanović, M. Soljačić, E.V.N. Wang, A nanophotonic solar thermophotovoltaic device. Nat. Nanotech. 9, 126–130 (2014)

    ADS  Google Scholar 

  2. A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, E. Meyhofer, Nanogap near-field thermophotovoltaics. Nat. Nanotech. 13, 806 (2018)

    ADS  Google Scholar 

  3. B. Zhao, P. Santhanam, K. Chen, S. Buddhiraju, S. Fan, Near-field thermophotonic systems for low-grade waste-heat recovery. Nano Lett. 18, 5224 (2018)

    ADS  Google Scholar 

  4. C.C. Chang, W.J.M. Kort-Kamp, J. Nogan, T.S. Luk, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, M. Sykora, H.T. Chen, High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Lett. 18, 7665 (2018)

    ADS  Google Scholar 

  5. G. Wehmeyer, T. Yabuki, C. Monachon, J. Wu, C. Dames, Thermal diodes, regulators, and switches: physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017)

    ADS  Google Scholar 

  6. A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S.-A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, P. Reddy, A thermal diode based on nanoscale thermal radiation. ACS Nano 12, 5774–5779 (2018)

    Google Scholar 

  7. A. Ott, R. Messina, P. Ben-Abdallah, S.-A. Biehs, Radiative thermal diode driven by nonreciprocal surface waves. Appl. Phys. Lett. 114, 163105 (2019)

    ADS  Google Scholar 

  8. Y. Zhang, C.L. Zhou, H.L. Yi, H.P. Tan, Radiative thermal diode mediated by nonreciprocal graphene plasmon waveguides. Phys. Rev. Appl. 13, 034021 (2020)

    ADS  Google Scholar 

  9. A. Kittel, U.F. Wischnath, J. Welker, O. Huth, F. Ruting, S.A. Biehs, Near-field thermal imaging of nanostructured surfaces. Appl. Phys. Lett. 93, 193109 (2008)

    ADS  Google Scholar 

  10. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.A. Lemoine, K. Joulain, J.P. Mulet, Y. Chen, J.J. Greffet, Thermal radiation scanning tunneling microscopy. Nature 444, 740 (2006)

    ADS  Google Scholar 

  11. P. Ben-Abdallah, Multitip near-field scanning thermal microscopy. Phys. Rev. Lett. 123, 264301 (2019)

    ADS  Google Scholar 

  12. D. Polder, M. Van Hove, Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303 (1971)

    ADS  Google Scholar 

  13. J.C. Cuevas, F.J. García-Vidal, Radiative Heat Transfer. ACS Photonics 5, 3896–3915 (2018)

    Google Scholar 

  14. J. Shi, P. Li, B. Liu, S. Shen, Tuning near field radiation by doped silicon. Appl. Phys. Lett. 102, 183114 (2013)

    ADS  Google Scholar 

  15. S.A. Biehs, F.S.S. Rosa, P. Ben-Abdallah, Modulation of near-field heat transfer between two gratings. Appl. Phys. Lett. 98, 243102 (2011)

    ADS  Google Scholar 

  16. K. Ito, T. Matsui, H. Iizuka, Thermal emission control by evanescent wave coupling between guided mode of resonant grating and surface phonon polariton on silicon carbide plate. Appl. Phys. Lett. 104, 051127 (2014)

    ADS  Google Scholar 

  17. X. Liu, B. Zhao, Z.M. Zhang, Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings. Phys. Rev. A 91, 062510 (2015)

    ADS  Google Scholar 

  18. J. Dai, S.A. Dyakov, M. Yan, Radiative heat transfer between two dielectric-filled metal gratings. Phys. Rev. B 93, 155403 (2016)

    ADS  Google Scholar 

  19. V.B. Svetovoy, P.J. van Zwol, J. Chevrier, Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics. Phys. Rev. B 85, 155418 (2012)

    ADS  Google Scholar 

  20. O. Ilic, M. Jablan, J.D. Joannopoulos, I. Celanovic, H. Buljan, M. Soljačić, Near-field thermal radiation transfer controlled by plasmons in grapheme. Phys. Rev. B 85, 155422 (2012)

    ADS  Google Scholar 

  21. Y. Zhang, H.L. Yi, H.P. Tan, Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon Polaritons. ACS Photonics 5, 3739 (2018)

    Google Scholar 

  22. K. Joulain, J. Drevillon, P. Ben-Abdallah, Noncontact heat transfer between two metamaterials. Phys. Rev. B 81, 165119 (2010)

    ADS  Google Scholar 

  23. X.L. Liu, Z.M. Zhang, Near-field thermal radiation between metasurfaces. ACS Photonics 2, 1320–1326 (2015)

    Google Scholar 

  24. V. Fernández-Hurtado, F.J. García-Vidal, S.H. Fan, J.C. Cuevas, Enhancing near-field radiative heat transfer with Si-based metasurfaces. Phys. Rev. Lett. 118, 203901 (2017)

    ADS  Google Scholar 

  25. A.S. Potemkin, A.N. Poddubny, P.A. Belov, Y.S. Kivshar, Green function for hyperbolic media. Phys. Rev. A 86, 023848 (2012)

    ADS  Google Scholar 

  26. M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, K. Kern, Tetradymites as natural hyperbolic materials for the near-infrared to visible. ACS Photon. 1, 1285–1289 (2014)

    Google Scholar 

  27. S. Manohar, A. van Apeldoorn, W. Steenbergen, Naturally hyperbolic. Nature Photon. 9, 214 (2015)

    ADS  Google Scholar 

  28. A. Archambault, T.V. Teperik, F. Marquier, J.J. Greffet, Surface plasmon Fourier optics. Phys. Rev. B 79, 195414 (2009)

    ADS  Google Scholar 

  29. S. Dai, Q. Ma, M.K. Liu, T. Andersen, Z. Fei, M.D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G.C.A.M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M.M. Fogler, D.N. Basov, Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature nanotech. 10, 682 (2015)

    ADS  Google Scholar 

  30. B. Zhao, B. Guizal, Z.M. Zhang, S. Fan, M. Antezza, Near-field heat transfer between graphene/hBN multilayers. Phys. Rev. B 95, 245437 (2017)

    ADS  Google Scholar 

  31. K. Shi, F. Bao, S. He, Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures. ACS Photonics 4, 971 (2017)

    Google Scholar 

  32. X.J. Hong, T.B. Wang, D.J. Zhang, W.X. Liu, T.B. Yu, Q.H. Liao, N.H. Liu, The near-field radiative heat transfer between graphene/SiC/hBN multilayer structures. Mater. Res. Express 5, 075002 (2018)

    ADS  Google Scholar 

  33. M. He, H. Qi, Y. Ren, Y. Zhao, M. Antezza, Active control of near-field radiative heat transfer by a graphene-gratings coating-twisting method. Opt. Lett. 45, 2914–2917 (2020)

    ADS  Google Scholar 

  34. M.J. He, H. Qi, Y.T. Ren, Y.J. Zhao, M. Antezza, Magnetoplasmonic manipulation of nanoscale thermal radiation using twisted graphene gratings. Int. J. Heat Mass Transf. 150, 119305 (2020)

    Google Scholar 

  35. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nature Photon. 7, 948 (2013)

    ADS  Google Scholar 

  36. P. Huo, S. Zhang, Y. Liang, Y. Lu, T. Xu, Hyperbolic metamaterials and metasurfaces: fundamentals and applications. Adv. Opt. Mater. 7, 1801616 (2019)

    Google Scholar 

  37. Z. Guo, H. Jiang, H. Chen, Hyperbolic metamaterials: from dispersion manipulation to applications. J. Appl. Phys. 127, 071101 (2020)

    ADS  Google Scholar 

  38. S.-A. Biehs, M. Tschikin, P. Ben-Abdallah, Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109, 104301 (2012)

    ADS  Google Scholar 

  39. S.-A. Biehs, M. Tschikin, R. Messina, P. Ben-Abdallah, Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials. Appl. Phys. Lett. 102, 131106 (2013)

    ADS  Google Scholar 

  40. X.L. Liu, R.Z. Zhang, Z.M. Zhang, Near-field thermal radiation between hyperbolic metamaterials: graphite and carbon nanotubes. Appl. Phys. Lett. 103, 213102 (2013)

    ADS  Google Scholar 

  41. X. Liu, R.Z. Zhang, Z. Zhang, Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes. ACS Photonics 1, 785 (2014)

    Google Scholar 

  42. S.-A. Biehs, V.M. Menon, G.S. Agarwal, Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial. Phys. Rev. B 93, 245439 (2016)

    ADS  Google Scholar 

  43. J. Song, Q. Cheng, Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials. Phys. Rev. B 94, 125419 (2016)

    ADS  Google Scholar 

  44. X.J. Hong, J.W. Li, T.B. Wang, D.J. Zhang, W.X. Liu, Q.H. Liao, T.B. Yu, N.H. Liu, Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials. Jpn. J. Appl. Phys. 57, 045001 (2018)

    ADS  Google Scholar 

  45. L.Y. Zhong, Q.M. Zhao, T.B. Wang, T.B. Yu, Q.H. Liao, N.H. Liu, Near-field radiative heat transfer between graphene/SiC multilayers. J. Heat Transfer 140, 072701 (2018)

    Google Scholar 

  46. P. Ben-Abdallah, S.-A. Biehs, K. Joulain, Many-body radiative heat transfer theory. Phys. Rev. Lett. 107, 114301 (2011)

    ADS  Google Scholar 

  47. R. Messina, M. Antezza, P. Ben-Abdallah, Three-body amplification of photon heat tunneling. Phys. Rev. Lett. 109, 244302 (2012)

    ADS  Google Scholar 

  48. W. Gu, G.H. Tang, W.Q. Tao, Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs. Int. J. Heat Mass Trans. 82, 429 (2015)

    Google Scholar 

  49. I. Latella, A. Pérez-Madrid, J.M. Rubi, S.-A. Biehs, P. Ben-Abdallah, Heat engine driven by photon tunneling in many-body systems. Phys. Rev. Appl. 4, 011001 (2015)

    ADS  Google Scholar 

  50. R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, S.-A. Biehs, Hyperbolic waveguide for long-distance transport of near-field heat flux. Phys. Rev. B 94, 104301 (2016)

    ADS  Google Scholar 

  51. H. Simchi, Graphene-based three-body amplification of photon heat tunneling. J. Appl. Phys. 121, 094301 (2017)

    ADS  Google Scholar 

  52. J. Song, L. Lu, Q. Cheng, Z. Luo, Three-body heat transfer between anisotropic magneto-dielectric hyperbolic metamaterials. J. Heat Trans. 140, 082005 (2018)

    Google Scholar 

  53. Y.H. Kan, C.Y. Zhao, Z.M. Zhang, Near-field radiative heat transfer in three-body systems with periodic structures. Phys. Rev. B 99, 035433 (2019)

    ADS  Google Scholar 

  54. Y.H. Kan, C.Y. Zhao, Z.M. Zhang, Enhancement and manipulation of near-field radiative heat transfer using an intermediate modulator. Phys. Rev. Appl. 13, 014069 (2020)

    ADS  Google Scholar 

  55. S.-A. Biehs, R. Messina, P.S. Venkataram, A.W. Rodriguez, J.C. Cuevas, P. Ben-Abdallah, Near-field radiative heat transfer in many-body systems. Rev. Mod. Phys. 93, 025009 (2021)

    ADS  MathSciNet  Google Scholar 

  56. S.F. Chuang, S.D. Collins, R.L. Smith, Porous silicon microstructure as studied by transmission electron microscopy. Appl. Phys. Lett. 55, 1540 (1989)

    ADS  Google Scholar 

  57. S. Shen, A. Narayanaswamy, G. Chen, Surface phonon Polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909 (2009)

    ADS  Google Scholar 

  58. B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F.J. Garcia-Vidal, J.C. Cuevas, P. Reddy, E. Meyhofer, Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat. Nanotech. 10, 253 (2015)

    ADS  Google Scholar 

  59. S.-A. Biehs, P. Ben-Abdallah, F.S.S. Rosa, K. Joulain, J.-J. Greffet, Nanoscale heat flux between nanoporous materials. Opt. Express 19, A1088 (2011)

    Google Scholar 

  60. E. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, New York, 1998)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (nos. 12164027, 11704175, 11664024) and the Open Project of the Education Ministry Key Laboratory of Radar Imaging and Microwave Photonic Technology.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work.

Corresponding authors

Correspondence to Tongbiao Wang or Qinghua Liao.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, T., Yu, T. et al. Near-field radiative heat transfer in the three-body system made of nanoporous silicon carbide. Eur. Phys. J. B 95, 140 (2022). https://doi.org/10.1140/epjb/s10051-022-00403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00403-z

Navigation