Skip to main content
Log in

Percolation and jamming properties in particle shape-controlled seeded growth model

  • Regular Article – Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We consider the percolation model with nucleation and simultaneous growth of multiple finite clusters, taking the initial seed concentration \(\rho \) as a tunable parameter. Growing objects expand with constant speed, filling the nodes of the triangular lattice according to rules that control their shape. As growing objects of predefined shape, we consider needle-like objects and “wrapping” objects whose size is gradually increased by wrapping the walks in several different ways, making triangles, rhombuses, and hexagons. Growing random walk chains are also analyzed as an example of objects whose shape is formed randomly during the growth. We compare the percolation properties and jamming densities of the systems of various growing shapes for a wide range of initial seed densities \(\rho < 0.5\). To gain a basic insight into the structure of the jammed states, we consider the size distribution of deposited growing objects. The presence of the most numerous and the largest growing objects is recorded for the system in the jamming state. Our results suggest that at sufficiently low seed densities \(\rho \), the way of the object growth has a substantial influence on the percolation threshold. This influence weakens with increasing \(\rho \) and ceases near the value of the site percolation threshold for monomers on the triangular lattice, \(\rho _\text {p}^* = 0.5\).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and there are no experimental data.]

References

  1. Dietrich Stauffer, Antonio Coniglio, and Mireille Adam, Gelation and critical phenomena,in Polymer Networks, edited by Karel Dušek (Springer Berlin Heidelberg, Berlin, Heidelberg, 1982) pp. 103–158

  2. Paul Meakin, The growth of rough surfaces and interfaces. Phys. Rep. 235, 189–289 (1993). https://doi.org/10.1016/0370-1573(93)90047-H

    Article  ADS  Google Scholar 

  3. D. Stauffer, A. Aharony, Introduction to percolation theory (Taylor & Francis, London, 1994)

    MATH  Google Scholar 

  4. W. Lebrecht, P.M. Centres, A.J. Ramirez-Pastor, Analytical approximation of the site percolation thresholds for monomers and dimers on two-dimensional lattices. Physica A 516, 133–143 (2019). https://doi.org/10.1016/j.physa.2018.10.023

    Article  ADS  MATH  Google Scholar 

  5. Grzegorz Kondrat, Impact of composition of extended objects on percolation on a lattice. Phys Rev E 78, 011101 (2008). https://doi.org/10.1103/PhysRevE.78.011101

    Article  ADS  Google Scholar 

  6. V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Dependence of the percolation threshold on the size of the percolating species, Physica A: Statistical Mechanics and its Applications327, 71–75 (2003). proceedings of the XIIIth Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics. https://doi.org/10.1016/S0378-4371(03)00453-9

  7. Lj. Budinski-Petković, I. Lončarević, M. Petković, Z.M. Jakšić, S.B. Vrhovac, Percolation in random sequential adsorption of extended objects on a triangular lattice. Phys Rev E 85, 061117 (2012). https://doi.org/10.1103/PhysRevE.85.061117

    Article  ADS  MATH  Google Scholar 

  8. D. Dujak, A. Karač, Lj. Budinski-Petković, I. I Lončarević, Z. M. Jakšić, S. B. Vrhovac, Percolation in random sequential adsorption of mixtures on a triangular lattice. J Stat Mech 2019, 113210 (2019). https://doi.org/10.1088/1742-5468/ab4588

    Article  MathSciNet  MATH  Google Scholar 

  9. J.W. Evans, Random and cooperative sequential adsorption. Rev Mod Phys 65, 1281–1329 (1993). https://doi.org/10.1103/RevModPhys.65.1281

    Article  ADS  Google Scholar 

  10. Vladimir Privman, Dynamics of nonequilibrium deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects 165, 231–240 (2000). https://doi.org/10.1016/S0927-7757(99)00412-4

    Article  Google Scholar 

  11. J. Talbot, G. Tarjus, P.R. Van Tassel, P. Viot, From car parking to protein adsorption: an overview of sequential adsorption processes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 165, 287–324 (2000). https://doi.org/10.1016/S0927-7757(99)00409-4

    Article  Google Scholar 

  12. A. Cadilhe, N.A.M. Araújo, V. Privman, Random sequential adsorption: from continuum to lattice and pre-patterned substrates. J Phys 19, 065124 (2007). https://doi.org/10.1088/0953-8984/19/6/065124

    Article  Google Scholar 

  13. V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Percolation of polyatomic species on a square lattice. Euro Phys J B Condensed Matter Complex Syst 36, 391–399 (2003). https://doi.org/10.1140/epjb/e2003-00358-1

    Article  Google Scholar 

  14. N. Vandewalle, S. Galam, M. Kramer, A new universality for random sequential deposition of needles. Euro Phys J B 14, 407–410 (2000). https://doi.org/10.1007/s100510051047

    Article  ADS  Google Scholar 

  15. Grzegorz Kondrat, Andrzej Pȩkalski, Percolation and jamming in random sequential adsorption of linear segments on a square lattice. Phys Rev E 63, 051108 (2001). https://doi.org/10.1103/PhysRevE.63.051108

    Article  ADS  Google Scholar 

  16. Grzegorz Kondrat, Zbigniew Koza, Piotr Brzeski, Jammed systems of oriented needles always percolate on square lattices. Phys Rev E 96, 022154 (2017). https://doi.org/10.1103/PhysRevE.96.022154

    Article  ADS  Google Scholar 

  17. M.G. Slutskii, LYu. Barash, YuYu. Tarasevich, Percolation and jamming of random sequential adsorption samples of large linear \(k\)-mers on a square lattice. Phys Rev E 98, 062130 (2018). https://doi.org/10.1103/PhysRevE.98.062130

    Article  ADS  Google Scholar 

  18. Federica Rampf, Ezequiel V. Albano, Interplay between jamming and percolation upon random sequential adsorption of competing dimers and monomers. Phys Rev E 66, 061106 (2002). https://doi.org/10.1103/PhysRevE.66.061106

    Article  ADS  Google Scholar 

  19. Piotr Adamczyk, Piotr Romiszowski, Andrzej Sikorski, A simple model of stiff and flexible polymer chain adsorption: the influence of the internal chain architecture. J Chem Phys 128, 154911 (2008). https://doi.org/10.1063/1.2907715

    Article  ADS  Google Scholar 

  20. Grzegorz Kondrat, Influence of temperature on percolation in a simple model of flexible chains adsorption. J Chem Phys 117, 6662–6666 (2002). https://doi.org/10.1063/1.1505866

    Article  ADS  Google Scholar 

  21. P. Longone, P.M. Centres, A.J. Ramirez-Pastor, Percolation of aligned rigid rods on two-dimensional square lattices. Phys Rev E 85, 011108 (2012). https://doi.org/10.1103/PhysRevE.85.011108

    Article  ADS  Google Scholar 

  22. E.J. Perino, D.A. Matoz-Fernandez, P.M. Pasinetti, A.J. Ramirez-Pastor, Jamming and percolation in random sequential adsorption of straight rigid rods on a two-dimensional triangular lattice. J Stat Mech 2017, 073206 (2017). https://doi.org/10.1088/1742-5468/aa79ae

    Article  Google Scholar 

  23. Joan Adler, Bootstrap percolation. Physica A 171, 453–470 (1991). https://doi.org/10.1016/0378-4371(91)90295-N

    Article  ADS  Google Scholar 

  24. S.R. Broadbent, J.M. Hammersley, Percolation processes. I: crystals and mazes. Math. Proc. Cambridge Philosophical Soc. 53, 629–641 (1957). https://doi.org/10.1017/S0305004100032680

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S.B. Santrs, I. Bose, Spiral site percolation on the square and triangular lattices. J. Phys. 25, 1105–1118 (1992). https://doi.org/10.1088/0305-4470/25/5/018

    Article  ADS  MathSciNet  Google Scholar 

  26. Babak Nikoobakht, Mostafa A. El-Sayed, Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method. Chem. Materials 15, 1957–1962 (2003). https://doi.org/10.1021/cm020732l

    Article  Google Scholar 

  27. Anand Gole, Catherine J. Murphy, Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem. Materials 16, 3633–3640 (2004). https://doi.org/10.1021/cm0492336

    Article  Google Scholar 

  28. Susan E. Habas, Hyunjoo Lee, Velimir Radmilovic, Gabor A. Somorjai, Peidong Yang, Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Materials 6, 692–697 (2007). https://doi.org/10.1038/nmat1957

  29. Samuel E. Lohse, The quest for shape control: a history of gold nanorod synthesis. Chem. Materials 25, 1250–1261 (2013). https://doi.org/10.1021/cm303708p

  30. Younan Xia, Kyle D. Gilroy, Hsin-Chieh. Peng, Xiaohu Xia, Seed-mediated growth of colloidal metal nanocrystals. Angewandte Chemie Int. Ed. 56, 60–95 (2017). https://doi.org/10.1002/anie.201604731

    Article  ADS  Google Scholar 

  31. Bappaditya Roy, S.B. Santra, First-order transition in a percolation model with nucleation and preferential growth. Phys. Rev. E 95, 010101 (2017). https://doi.org/10.1103/PhysRevE.95.010101

    Article  ADS  Google Scholar 

  32. Bappaditya Roy, S.B. Santra, Finite size scaling study of a two parameter percolation model: constant and correlated growth. Physica A 492, 969–979 (2018). https://doi.org/10.1016/j.physa.2017.11.028

    Article  ADS  Google Scholar 

  33. J. Carrey, J.-L. Maurice, Transition from droplet growth to percolation: Monte carlo simulations and an analytical model. Phys. Rev. B 63, 245408 (2001). https://doi.org/10.1103/PhysRevB.63.245408

    Article  ADS  Google Scholar 

  34. I. Lončarević, Lj. Budinski-Petković, D. Dujak, A. Karač, Z. M. Jakšić, and S. B. Vrhovac, The study of percolation with the presence of extended impurities, Journal of Statistical Mechanics: Theory and Experiment2017, 093202 (2017). http://stacks.iop.org/1742-5468/2017/i=9/a=093202

  35. M.E.J. Newman, R.M. Ziff, Fast Monte Carlo algorithm for site or bond percolation. Phys. Rev. E 64, 016706 (2001). https://doi.org/10.1103/PhysRevE.64.016706

    Article  ADS  Google Scholar 

  36. I. Lončarević, Lj. Budinski-Petković, S.B. Vrhovac, Simulation study of random sequential adsorption of mixtures on a triangular lattice. Euro. Phys. J. E. 24, 19–26 (2007). https://doi.org/10.1140/epje/i2007-10206-4

  37. Lj. Budinski-Petković, S.B. Vrhovac, I. Lončarević, Random sequential adsorption of polydisperse mixtures on discrete substrates. Phys. Rev. E 78, 061603 (2008). https://doi.org/10.1103/PhysRevE.78.061603

    Article  ADS  Google Scholar 

  38. Lj Budinski-Petković, I Lončarević, Z M Jakšić, and S B Vrhovac, Jamming and percolation in random sequential adsorption of extended objects on a triangular lattice with quenched impurities, Journal of Statistical Mechanics: Theory and Experiment2016, 053101 (2016). http://stacks.iop.org/1742-5468/2016/i=5/a=053101

  39. H. Markus Porto, Eduardo Roman, Critical packing fraction of rectangular particles on the square lattice. Phys. Rev. E 62, 100–102 (2000). https://doi.org/10.1103/PhysRevE.62.100

  40. Mitsunobu Nakamura, Percolational and fractal property of random sequential packing patterns in square cellular structures. Phys. Rev. A 36, 2384–2388 (1987). https://doi.org/10.1103/PhysRevA.36.2384

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia. Numerical simulations were run on the PARADOX supercomputing facility at the Scientific Computing Laboratory of the Institute of Physics Belgrade.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: S. B. Vrhovac and Lj. Budinski-Petković; Analysis and interpretation of numerical data: D. Dujak, A. Karač and Z. M. Jakšić; Development of the numerical simulations: D. Dujak and A. Karač; Drafting of manuscript: S. B. Vrhovac and Lj. Budinski-Petković; Critical revision: S. B. Vrhovac, Lj. Budinski-Petković and Z. M. Jakšić

Corresponding author

Correspondence to S. B. Vrhovac.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dujak, D., Karač, A., Budinski-Petković, L. et al. Percolation and jamming properties in particle shape-controlled seeded growth model. Eur. Phys. J. B 95, 143 (2022). https://doi.org/10.1140/epjb/s10051-022-00401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00401-1

Navigation