Skip to main content
Log in

The effect of impurity oxygen solution and segregation on Mo/Cr interface stability by multi-scale simulations

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The adhesion strength mechanism of an interface forming from Cr coating deposited on the Mo matrix surface has been performed using a DFT + U method. First, we have obtained the lattice constant, bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio for Mo and Cr bulk, respectively. The oxygen atom is inclined to solute in the tetrahedral interstitial site for Mo; while for Cr, an octahedral location is well to contain an impurity oxygen atom. By substitute mechanism, it has suggested that a Cr atom is easier to take over a Mo atom. Subsequently, based on the surface energy and work function analysis, we have established the corresponding the optimum surface and interface models. Our results suggested that Mo(110)/Cr(110) interface was most stable among the possible Mo/Cr interfaces. In additions, the effect of the impurity oxygen atom on the interface stability has also been studied. It has been predicted that the impurity O atom prefers to solute into the near Cr surface edge. The work of adhesion for interface with impurity O atom is higher than the clean interface without O atom, which means that the impurity O atom could generate the positive effect on the adhesion mechanism of Cr-coating Mo alloys. Furthermore, to analyze the interface cracking, we have performed the SEDG distributions to study fracture behavior along the cracking paths through the CFE method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated during this study are contained in this publish article.]

References

  1. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective. J. Nucl. Mater. 448, 374–379 (2014). https://doi.org/10.1016/j.jnucmat.2013.12.005

    Article  ADS  Google Scholar 

  2. B. Cheng, Y.J. Kim, P. Chou, Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding. Nucl. Eng. Tech. 48, 16–25 (2016). https://doi.org/10.1016/j.net.2015.12.003

    Article  Google Scholar 

  3. C. Tang, M. Stueber, H.J. Seifert, M. Steinbrueck, Protective coating on zirconium-based alloys as accident-tolerant fuel(ATF) claddings. Corros. Rev. 35, 141–165 (2017). https://doi.org/10.1515/corrrev-2017-0010

    Article  Google Scholar 

  4. W. Zhong, P.A. Mouche, B.J. Heuser, Response of Cr and Cr-Al coating on Zircaloy-2 to high temperature steam. J. Nucl. Mater. 498, 137–148 (2018). https://doi.org/10.1016/j.jnucmat.2017.10.021

    Article  ADS  Google Scholar 

  5. K.A. Terrani, G.M. Parish, D. Shin, B.A. Pint, Protection of zirconium by alumina and chromia-forming iron alloys under high-temperature steam exposure. J. Nucl. Mater. 438, 64–71 (2013). https://doi.org/10.1016/j.jnucmat.2013.03.006

    Article  ADS  Google Scholar 

  6. A.S. Kuprin, V.A. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, P.N. Vyugov, Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air. J. Nucl. Mater. 465, 400–406 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.016

    Article  ADS  Google Scholar 

  7. J.C. Brachet, I. Idarraga-Trujillo, M. Le Saux et al., Early studies on Cr-coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors. J. Nucl. Mater. 517, 268–285 (2019). https://doi.org/10.1016/j.jnucmat.2019.02.018

    Article  ADS  Google Scholar 

  8. H. John, H. Perepezko, S. Ridwan, Oxidation resistance coatings for ultrahigh temperature refractory Mo-base alloys. Adv. Engin. Mater. 11, 892–897 (2009). https://doi.org/10.1002/adem.200900118

    Article  Google Scholar 

  9. J. Yang, Y. Wang, J.H. Huang, W.L. Wang, Z. Ye, S.H. Chen, Y. Zhao, First-principles calculation on interface structure and fracture characteristic of TiC/TiZrC nano-multilayer film based on virtual crystal approximation. J. Alloys. Compd. 755, 211–223 (2018). https://doi.org/10.1016/j.jallcom.2018.05.009

    Article  Google Scholar 

  10. Z.L. Zhang, J. Chen, G.Y. He, G.J. Yang, First-principle calculations of CrN(200)/Ni(111) interface: atomic structure, stability, and electronic properties. Surf. Interface Anal. 1, 1–9 (2020)

    ADS  Google Scholar 

  11. B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1, 1987–1995 (1970)

    Article  Google Scholar 

  12. W. Shao, J. Liu, Z. Shi, Theoretical calculation of adhesion performance and mechanical properties of CrN/ɑ-Fe interface. J Alloys Compd. 810, 151921 (2019). https://doi.org/10.1016/j.jallcom.2019.151921

    Article  Google Scholar 

  13. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  MathSciNet  Google Scholar 

  14. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  15. J.P. Perdew, A. Zunger, Self-interaction correlation to density-functional approximations for many-electrons systems. Phys. Rev. B 23, 5048–5079 (1981). https://doi.org/10.1103/PhysRevB.23.5048

    Article  ADS  Google Scholar 

  16. G.G. Broyden, The convergence of a class of double-rank minimization algorithms 2. The new algorithm. IMA J. Appl. Math. 6, 76–90 (1970). https://doi.org/10.1093/imamat/6.3.222

    Article  MathSciNet  MATH  Google Scholar 

  17. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Fawcett, Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209 (1988). https://doi.org/10.1103/RevModPhys.60.209

    Article  ADS  Google Scholar 

  19. J. Yang, J.H. Huang, D.Y. Fan, S.H. Chen, X.K. Zhao, First-principles investigation on the interaction of Boron atom with Nickel part I: from surface adsorption to bulk diffusion. J. Alloys Compd. 663, 116–122 (2016). https://doi.org/10.1016/j.jallcom.2015.12.138

    Article  Google Scholar 

  20. N.J. Mosely, P. Liao, E. Carter, Rotationally invariant ab initio evaluation of coulomb and exchange parameters for DFT+U calculations. J. Chem. Phys. 129, 014103 (2008). https://doi.org/10.1063/1.2943142

    Article  ADS  Google Scholar 

  21. M. Baldon, L. Craco, Gotthard Seifert and Stefano Leoni, A two-electron mechanism of lithium insertion into layered ɑ-MoO3: A DFT and DFT+U study. J. Mater. Chem, A. 1, 1778–1784 (2013). https://doi.org/10.1039/C2TA00839D

    Article  Google Scholar 

  22. X. Wei, C.F. Dong, Z.H. Chen, K. Xiao, X.G. Li, The effect of hydrogen on the evolution of intergranular cracking: a cross-scale study using first-principles and cohesive finite element methods. RSC Adv. 6, 27282 (2016). https://doi.org/10.1039/C5RA26061B

    Article  ADS  Google Scholar 

  23. I. Simonovski, L. Cizelj, Cohesive zone modeling of intergranular cracking in polycrystalline aggregates. Nucl. Eng. Des. 283, 139–147 (2015). https://doi.org/10.1016/j.nucengdes.2014.09.041

    Article  Google Scholar 

  24. P.B. Zhang, J.J. Zhao, B. Wen, Retention and diffusion of H, He, O, C impurities in Be. J. Nucl. Mater. 423, 164–169 (2012). https://doi.org/10.1016/j.jnucmat.2012.01.027

    Article  ADS  Google Scholar 

  25. N. Jin, Y.Q. Yang, J. Li, X. Luo, B. Huang, Q. Sun, P.F. Guo, First-principles calculation on β-SiC(111)/ɑ-WC(0001) interface. J. Appl. Phys. 115, 223714 (2014). https://doi.org/10.1063/1.4883758

    Article  ADS  Google Scholar 

  26. Y.K. Jung, K.T. Butler, A. Walsh, Halide perovskite heteroepitaxy: bond formation and carrier confinement at the PbS-CsPbBr 3 interface. J. Phys. Chem. C. 121, 27351 (2017)

    Article  Google Scholar 

  27. D.J. Siegel, L.G. Hector, J.B. Adams, Adhesion, stability, and bonding at metal/metal-carbide interface: Al/WC. Surf. Sci. 498, 321–336 (2002). https://doi.org/10.1016/S0039-6028(01)01811-8

    Article  ADS  Google Scholar 

  28. C. Freysoldt, J. Neugebauer, First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields. Phys. Rev. B 97, 205425 (2018). https://doi.org/10.1103/PhysRevB.97.205425

    Article  ADS  Google Scholar 

  29. Z.S. Lu, S. Li, P. Lv, C.Z. He, D.W. Ma, Z.X. Yang, First principles study on the interfacial properties of NM/graphdiyne (NM= Pd, Pt, Rh, and Ir): the implications for NM growing. Appl. Surf. Sci. 360, 1–7 (2016). https://doi.org/10.1016/j.apsusc.2015.10.219

    Article  ADS  Google Scholar 

  30. J. Yang, J.H. Huang, Z. Ye, D.Y. Fan, S.H. Chen, Y. Zhao, First-principle calculations on structural energetics of Cu-Ti binary system intermetallic compounds in Ag-Cu-Ti and Cu-Ni-Ti active filler metals. Ceram. Int. 43, 7751–7761 (2017). https://doi.org/10.1016/j.ceramint.2017.03.083

    Article  Google Scholar 

  31. L.M. Liu, S.Q. Wang, H.Q. Ye, First-principles study of polar Al/TiN(111) interfaces. Acta Mater. 52, 3681–3688 (2004). https://doi.org/10.1016/j.actamat.2004.04.022

    Article  ADS  Google Scholar 

  32. R. Benedek, D.N. Seidman, C. Woodward, The effect of misfit on heterophase interface energies. J. Phys.: Condens Matter. 14, 2877–2900 (2002)

    ADS  Google Scholar 

  33. M.W. Finnis, The theory of metal-ceramic interfaces, Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: a molecular dynamics simulation study. J. Phys: Condens. Matter. 8, 5811 (1996). https://doi.org/10.1063/1.366676

    Article  ADS  Google Scholar 

  34. J. Schnitker, D.J. Srolovitz, Misfit effects in adhesion calculations. Model. Simul. Mater. Sci. Eng. 6, 153 (1998)

    Article  ADS  Google Scholar 

  35. H. Park, M.R. Fellinger, T.J. Lenosky, W.W. Tipton, D.R. Trinkle, S.P. Rudin, Ab initio based empirical potential used to study the mechanical properties of molybdenum. Phys. Rev. B. 85, 214121 (2012). https://doi.org/10.1103/PhysRevB.85.214121

    Article  ADS  Google Scholar 

  36. J.T. Lenkkeri, The elastic moduli of some body-centered cubic titanium-vanadium, vanadium-chromium and chromium-iron alloys. J. Phys. F: Met. Phys. 10, 611–618 (1980)

    Article  ADS  Google Scholar 

  37. V. Razumovskiy, A.V. Ruban, P.A. Korzhavyi, First-principles study of elastic properties of Cr- and Fe-rich Fe-Cr alloys. Phys. Rev. B. 84, 024106 (2011). https://doi.org/10.1103/PhysRevB.84.024106

    Article  ADS  Google Scholar 

  38. D. Bolef, J. de Klerk, Anomalies in the elastic constants and thermal expansion of chromium single crystals. Phys. Rev. 129, 1063–1067 (1963). https://doi.org/10.1103/PhysRev.129.1063

    Article  ADS  Google Scholar 

  39. K.W. Katahara, Elastic moduli of paramagnetic chromium and Ti-V-Cr alloys. J. Phys. F: Met. Phys. 9, 2167–2176 (1979)

    Article  ADS  Google Scholar 

  40. C.W. Weaver, Irradiation and the ductility of chromium. Scr. Metall. 2, 463–466 (1968). https://doi.org/10.1016/0036-9748(68)90195-6

    Article  Google Scholar 

  41. U. Holzwarth, H. Stamm, Mechanical and thermomechanical properties of commercially pure chromium ad chromium alloys. J. Nucl. Mater. 300, 161–177 (2002). https://doi.org/10.1016/S0022-3115(01)00745-0

    Article  ADS  Google Scholar 

  42. J.R. Stephens, W.D. Klopp, High-temperature creep of polycrystalline chromium. J. Common Met. 27, 87–94 (1972). https://doi.org/10.1016/0022-5088(72)90108-7

    Article  Google Scholar 

  43. G. Simmons, Single crystal elastic constants and calculated aggregate progress. J. Grad. Res. Cent. 34, 273 (1965)

    Google Scholar 

  44. G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd edn. (MIT Press, Cambridge, 1971)

    Google Scholar 

  45. J. Yang, J.H. Huang, Z. Ye, D.Y. Fan, S.H. Chen, Y. Zhao, First-principles calculations on structural energetics of Cu-Ti binary system intemetallic compounds in Ag-Cu-Ti and Cu-Ni-Ti active filler metals. Ceram. Int. 43, 7751–7761 (2017). https://doi.org/10.1016/j.ceramint.2017.03.083

    Article  Google Scholar 

  46. W. Voigt, On the relation between the elasticity constants of isotropic bodies. Ann. Phys. (Leipzig) 38, 573–578 (1889)

    Article  ADS  Google Scholar 

  47. A. Reuss, Z. Angew, Computation of the yield point of mixed crystals due to hiring for single crystals. Math. Mech. 9, 49–59 (1929)

    Google Scholar 

  48. R. Hill, The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)

    Article  ADS  Google Scholar 

  49. S.F. Pugh XCII, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  50. P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of high temperature corrosion. Trans Tech Publications Ltd.: Uetikon-Zürich, Switzerland (2008)

  51. Bo. Cheng, Y.-J. Kim, P. Chou, Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding. Nuclear Eng. Technol. 48, 16–25 (2016). https://doi.org/10.1016/j.net.2015.12.003

    Article  Google Scholar 

  52. Z.Q. Wang, Y.H. Li, H.F. Gong, Q.Y. Ren, F.F. Ma, T. Liu, G.H. Lu, H.B. Zhou, Suppressing effect of carbon on oxygen induced embrittlement in molybdenum grain boundary. Comp. Mater. Sci. 198, 110676 (2021). https://doi.org/10.1016/j.commatsci.2021.110676

    Article  Google Scholar 

  53. R. Ratnayake, E. Mader, Hydrogen pickup and permeability for coated cladding technologies, Technical Report (2020)

  54. J.C. Boettger, Nonconvergence of surface energies obtained from thin-films calculations. Phys. Rev. B. 49, 16798 (1994). https://doi.org/10.1103/PhysRevB.49.16798

    Article  ADS  Google Scholar 

  55. V. Fiorentini, M. Methfessel, Extracting convergent surface energies from slab calculations. J. Phys: Condens. Matter. 8, 6525 (1996)

    ADS  Google Scholar 

  56. M. Ramamoorthy, D. Vanderbilt, R.D. King-Smith, First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B 49, 16721–16727 (1994). https://doi.org/10.1103/PhysRevB.49.16721

    Article  ADS  Google Scholar 

  57. H. Park, M.R. Fellinger, T.J. Lenosky, W.W. Tipton, D.R. Trinkle, S.P. Rudin, Ab inito based empirical potential used to study the mechanical properties of molybdenum. Phys. Rev. B. 85, 214121 (2012). https://doi.org/10.1103/PhysRevB.85.214121

    Article  ADS  Google Scholar 

  58. L.A. Zotti, S. Sanvito, D.D. O’Regan, A simple descriptor for energetics at fcc-bcc metal interfaces. Mater. Deisgn 142, 158–165 (2018). https://doi.org/10.1016/j.matdes.2018.01.019

    Article  Google Scholar 

  59. A. Wu, J. Ribis, J.-C. Brachet, E. Clouet, F. Leprêtre, E. Bordas, B. Arnal, HRTEM and chemical study of an ion-irradiated chromium/zircaloy-4 interface. J. Nucl. Mater. 504, 289–299 (2018). https://doi.org/10.1016/j.jnucmat.2018.01.029

    Article  ADS  Google Scholar 

  60. J. Ribis, A. Wu, J.-C. Brachet, F. Barcelo, B. Arnal, Atomic-scale interface structure of a Cr-coated Zircaloy-4 material. J. Mater. Sci. 53, 9798–9895 (2018)

    Article  Google Scholar 

  61. R. Benedek, D.N. Seidman, C. Woodward, The effect of misfit on heterophase interface energies. J. Phys. 14, 2877–2900 (2002)

    Google Scholar 

  62. Y. Chen, S. Shao, X.-Y. Liu, S.K. Yadav, N. Li, N. Mara, J. Wang, Misfit dislocation patterns of Mg-Nb interfaces. Acta Mater. 126, 552–563 (2017). https://doi.org/10.1016/j.actamat.2016.12.041

    Article  ADS  Google Scholar 

  63. S. Shao, F. Akasheh, J. Wang, Y. Liu, Alternative misfit dislocations pattern in semi-coherent FCC 100 interfaces. Acta Mater. 144, 177–186 (2018). https://doi.org/10.1016/j.actamat.2017.10.052

    Article  ADS  Google Scholar 

  64. S. Shao, J. Wang, I.J. Beyerlein, A. Misra, Glide dislocation nucleation from dislocation nodes at semi-coherent 111 Cu-Ni interfaces. Acta Mater. 98, 206–220 (2015). https://doi.org/10.1016/j.actamat.2015.07.044

    Article  ADS  Google Scholar 

  65. B.P. Uberuaga, P.P. Dholabhai, G. Pilania, A. Chen, Semicoherent oxide heterointerfaces: structure, properties, and implications. APL Mater. 7, 100904 (2019). https://doi.org/10.1063/1.5121027

    Article  ADS  Google Scholar 

  66. A. Hashibon, C. Elsässer, Y. Mishin, P. Gumbsch, First-principles study of thermodynamical and mechanical stabilities of thin copper film on tantalum. Phys. Rev. B. 76, 245434 (2007). https://doi.org/10.1103/PhysRevB.76.245434

    Article  ADS  Google Scholar 

  67. A. Hashibon, C. Elsässer, M. Rhle, Structure at abrupt copper–alumina interfaces: an ab initio study. Acta Mater. 53, 5323–5332 (2005). https://doi.org/10.1016/j.actamat.2005.07.036

    Article  ADS  Google Scholar 

  68. X.Y. Xu, H.Y. Wang, M. Zha, C. Wang, Z.Z. Yang, Q.C. Jiang, Effects of Ti, Si, Mg and Cu additions on interfacial properties and electronic structure of Al(111)/4H-SiC(0001) interface: a first-principles study. Appl. Surf. Sci. 437, 103–109 (2018). https://doi.org/10.1016/j.apsusc.2017.12.103

    Article  ADS  Google Scholar 

  69. L.F. Yao, K. Li, N.G. Zhou, First-principles study of Mn adsorption on Al4C3(0001) surface. Appl. Surf. Sci. 363, 168–172 (2016). https://doi.org/10.1016/j.apsusc.2015.11.262

    Article  ADS  Google Scholar 

  70. M. Willenbockel, D. Lüftner, B. Stadtmüller, G. Koller, C. Kumpf, S. Soubatch, F.S. Tautz, The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces. Phys. Chem. Chem. Phys. 17, 1530–1548 (2015). https://doi.org/10.1039/C4CP04595E

    Article  Google Scholar 

  71. J. Pina, A. Dias-Morao, M. François, J.L. Lebrun, Residual stresses and crystallographic texture in hard-chromium electroplated coatings. Surf. Coat. Technol. 96, 148–162 (1997). https://doi.org/10.1016/S0257-8972(97)00075-3

    Article  Google Scholar 

  72. M. Nielsen, M.E. Björketun, M.H. Hansen, J. Rossmeisl, Towards first principles modeling of electronchemical electrode-electrolyte interfaces. Surf. Sci. 631, 2–7 (2015). https://doi.org/10.1016/j.susc.2014.08.018

    Article  ADS  Google Scholar 

  73. C. Gautier, J. Machet, Effects of deposition parameters on the texture of chromium films deposited by vacuum arc evaporation. Thin Solid Films 289, 34–38 (1996). https://doi.org/10.1016/S0040-6090(96)08891-8

    Article  ADS  Google Scholar 

  74. J.D. Gale, GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. 93, 629–637 (1997). https://doi.org/10.1039/A606455H

    Article  Google Scholar 

  75. W. Setyawan, Density functional theory calculation of helium segregation and decohesion effect in W110/Ni111 interphase boundary. J. Appl. Phys. 128, 145101 (2020). https://doi.org/10.1063/5.0011744

    Article  ADS  Google Scholar 

  76. B. Navinšek, P. Panjan, Oxidation resistance of PVD Cr, Cr-N, and Cr-N-O bard coatings. Surf. Coat. Tech. 59, 244–248 (1993). https://doi.org/10.1016/0257-8972(93)90091-2

    Article  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by the National Supercomputing Center in Shenzhen, and the National Key Research and Development Program of China (Grant no. 2017YFB0702401).

Author information

Authors and Affiliations

Authors

Contributions

HG: visualization, methodology, writing—original draft, writing—review and editing. HH: conceptualization, methodology, visualization, writing—review and editing, formal analysis. DG: writing—review and editing, formal analysis. QR: writing—review and editing, formal analysis. YL: writing—review and editing, formal analysis. GZ: writing—review and editing, formal analysis.

Corresponding author

Correspondence to Hengfeng Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Huang, H., Guo, D. et al. The effect of impurity oxygen solution and segregation on Mo/Cr interface stability by multi-scale simulations. Eur. Phys. J. B 95, 162 (2022). https://doi.org/10.1140/epjb/s10051-022-00377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00377-y

Navigation