Skip to main content
Log in

First principles study of structural, elastic, and thermodynamic properties of LiAl2X (X = Rh, Pd, Ir and Pt) intermetallic compounds

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The equilibrium structural parameters, thermodynamic properties, elastic constants, and several other related properties of LiMAl2 (M = Rh, Pd, Ir and Pt) ternary intermetallic compounds have been investigated, employing the projected augmented wave pseudopotentials (PAW) approach in the framework of the density functional theory (DFT) as implemented in the Quantum Espresso code. Our findings on the lattice parameters of LiMAl2 (M = Rh, Pd, Ir and Pt) compounds agree well with the experimental ones, while our obtained results of the elastic constants are in general slightly higher than the theoretical ones reported previously in literature. Our results concerning the mechanical stability criteria indicate that all LiMAl2 (M = Rh, Pd, Ir and Pt) are mechanically stable at equilibrium, while the analyses of both Zener anisotropy factor and elastic anisotropy index show that all these compounds are highly anisotropic in their elastic properties. According to Mukhanov et al.’s (Philos. Mag. 89:2117, 2009) model, the Vickers hardness HV of LiMAl2 (M = Rh, Pd, Ir and Pt) increases gradually and almost linearly with increasing pressure. The Debye temperature θD as well as the melting point Tm of the aggregate materials are calculated using two different empirical expressions. The obtained values of θD are around 499.5 (546.4) K for LiRhAl2, 478.7 (520.6) K for LiPdAl2, 411 (451) K for LiIrAl2, and 417.3 (455.2) K for LiPtAl2 compound, respectively; while those of Tm are found to be around 1566 (1448) K for LiRhAl2, 1436 (1316) K for LiPdAl2, 1650 (1502) K for LiIrAl2, and 1615 (1489) K for LiPtAl2, respectively. Our calculated data show that the behavior of the thermodynamic properties with increasing temperatures is monotonic for all our materials of interest.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited [Authors’ comment: To the best of our knowledge, the elastic constants Cij of these materials were calculated only in the Ref. [6]. Unfortunately the authors of Ref. [6] have limited their calculation only on the Cij, and not on the other related parameters. Perhaps, the absence of the experimental data or other theoretical values of θD and Tm for LiMAl2 (M = Rh, Pd, Ir and Pt) is due to the limited works on the elastic constants Cij of these materials, because theoretically θD and Tm of the materials were usually obtained from the elastic constants Cij.]

References

  1. R. Sharma, S.A. Dar, N. Parveen, V. Srivastava, J. Mol. Graph. Model. 94, 107463 (2020). https://doi.org/10.1016/j.jmgm.2019.107463

    Article  Google Scholar 

  2. B. Fatima, S.S. Chouhan, N. Acharya, S.P. Sanya, Comput. Mater. Sci. 89, 205–215 (2014). https://doi.org/10.1016/j.commatsci.2014.03.008

    Article  Google Scholar 

  3. A. Czybulka, A. Petersen, H.-U. Schuster, J. Less-Common Met. 161, 303 (1990). https://doi.org/10.1016/0022-5088(90)90041-H

    Article  Google Scholar 

  4. L. Drews-Nicolai, G. Hohlneicher, J. Alloys Compd. 316, 1–17 (2001). https://doi.org/10.1016/S0925-8388(00)01242-1

    Article  Google Scholar 

  5. C.M. Kube, J. Acoust. Soc. Am. 141, 1804–1811 (2017). https://doi.org/10.1121/1.4978008

    Article  ADS  Google Scholar 

  6. C.M. Kube, Supplementary Table to Article: Iterative solution to bulk wave propagation in polycrystalline materials. See supplementary material at: https://doi.org/10.1121/1.4978008

  7. C.M. Kube, AIP Adv. 6, 095209 (2016). https://doi.org/10.1063/1.4962996

    Article  ADS  Google Scholar 

  8. S. Daoud, N. Bioud, L. Belagraa, N. Lebga, J. Nano- Electron. Phys., 5, 04061 (2013). https://jnep.sumdu.edu.ua/en/full_article/1138.

  9. P. Zhou, H.R. Gong, J. Mech. Behav. Biomed. Mater. 8, 154 (2012). https://doi.org/10.1016/j.jmbbm.2011.12.001

    Article  Google Scholar 

  10. S. Daoud, N. Bouarissa, A. Benmakhlouf, O. Allaoui, Phys. Status Solidi B 257, 1900537 (2020). https://doi.org/10.1002/pssb.201900537

    Article  ADS  Google Scholar 

  11. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998). https://doi.org/10.1063/1.368733

    Article  ADS  Google Scholar 

  12. S. Daoud, N. Bioud, N. Lebga, Chinese J. Phys. 57, 165 (2019). https://doi.org/10.1016/j.cjph.2018.11.018

    Article  ADS  Google Scholar 

  13. X. Zeng, R. Peng, Y. Yu, Z. Hu, Y. Wen, L. Song, Materials 11, 2015 (2018). https://doi.org/10.3390/ma11102015

    Article  ADS  Google Scholar 

  14. H. Rekab-Djabri, M.M. Abdus Salam, S. Daoud, M. Drief, Y. Guermit, S. Louhibi-Fasla, J. Magnes. Alloy. 8, 1166 (2020). https://doi.org/10.1016/j.jma.2020.06.007

    Article  Google Scholar 

  15. Z.T.Y. Liu, X. Zhou, D. Gall, S.V. Khare, Comput. Mater. Sci. 84, 365–373 (2014). https://doi.org/10.1016/j.commatsci.2013.12.038

    Article  Google Scholar 

  16. M. Talati, S. Shinde, P.K. Jha, Physica B 348, 235–241 (2004). https://doi.org/10.1016/j.physb.2003.11.095

    Article  ADS  Google Scholar 

  17. K. Balasubramanian, S. Khare, D. Gall, Phys. Rev. B 94, 174111 (2016). https://doi.org/10.1103/PhysRevB.94.174111

    Article  ADS  Google Scholar 

  18. N. Bioud, X.W. Sun, S. Daoud, T. Song, Z.J. Liu, Mater. Res. Express 5, 085904 (2018). https://doi.org/10.1088/2053-1591/aad3a5

    Article  ADS  Google Scholar 

  19. M. Aynyas, S.P. Sanyal, P.K. Jha, Phys. Status Solidi B 229, 1459–1466 (2002). https://doi.org/10.1002/1521-3951(200202)229:3%3c1459::AID-PSSB1459%3e3.0.CO;2-J

    Article  ADS  Google Scholar 

  20. S. Baroni, A. Dal Corso, S. Gironcoli, P. Giannozzi, Rev. Med. Phys. 73, 515 (2001). https://doi.org/10.1103/RevModPhys.73.515

    Article  ADS  Google Scholar 

  21. P.E. Blӧchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  22. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin et al., Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  Google Scholar 

  23. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  24. A.D. Corso, J. Phy. Condens. Matter, 28, 075401 (2016). https://dalcorso.github.io/thermo_pw/

  25. S. Khatta, V. Kaur, S.K. Tripathi, S. Prakash, AIP Conf. Proc. 1953, 130016 (2018). https://doi.org/10.1063/1.5033160

    Article  Google Scholar 

  26. A. Rastogi, P. Rajpoot, U.P. Verma, Bull. Mater. Sci. 42, 112 (2019). https://doi.org/10.1007/s12034-019-1758-8

    Article  Google Scholar 

  27. B.K. Pande, A.K. Pandey, C.K. Singh, AIP Conf. Proc. 1942, 120004 (2018). https://doi.org/10.1063/1.5029044

    Article  Google Scholar 

  28. A.R. Oganov, J.P. Brodholt, G.D. Price, in Ab initio theory of phase transitions and thermoelasticity of minerals, ed. by C.M. Gramaccioli. Energy Modelling in Minerals, vol. 4, chapter 5 (Eötvös University Press, Budapest, 2002), pp. 83–170. https://doi.org/10.1180/EMU-notes.4

  29. S. Daoud, Eur. Phys. J. B 89, 47 (2016). https://doi.org/10.1140/epjb/e2016-60844-9

    Article  ADS  Google Scholar 

  30. R.E. Newnham, Properties of materials: Anisotropy, Symmetry, Structure (Oxford University Press, Oxford, 2005), p. 5

    Google Scholar 

  31. S. Daoud, Mat. Res. 19, 314 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0602

    Article  Google Scholar 

  32. S. Amari, I.E. Yahiaoui, Y. Bourourou, Physica B 515, 112–117 (2015). https://doi.org/10.1016/j.physb.2017.04.010

    Article  ADS  Google Scholar 

  33. N. Korozlu, K. Colakoglu, E. Deligöz, S. Aydin, J. Alloys Compd. 546, 157 (2013). https://doi.org/10.1016/j.jallcom.2012.08.062

    Article  Google Scholar 

  34. S. Daoud, N. Bioud, N. Bouarissa, Mater. Sci. Semicond. Process. 31, 124 (2015). https://doi.org/10.1016/j.mssp.2014.11.024

    Article  Google Scholar 

  35. J.J. Gilman, Electronic basis of the strength of materials (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  36. S. Jiang, L. Shao, T. Fan, J.-M. Duan, X.-T. Chen, B.-Y. Tang, Int. J. Quantum Chem. 121, e26509 (2021). https://doi.org/10.1002/qua.26509

    Article  Google Scholar 

  37. V.A. Mukhanov, O.O. Kurakevych, V.L. Solozhenko, Philos. Mag. 89, 2117 (2009). https://doi.org/10.1080/14786430903032563

    Article  ADS  Google Scholar 

  38. H. Algarni, O.A. Al-Hagan, N. Bouarissa, M.A. Khan, T.F. Alhuwaymel, Infrared Phys. Technol. 86, 176 (2017). https://doi.org/10.1016/j.infrared.2017.09.012

    Article  ADS  Google Scholar 

  39. N. Bouarissa, S. Saib, M. Boucenna, F. Mezrag, Comput. Condens. Matter. 18, e00346 (2018). https://doi.org/10.1016/j.cocom.2018.e00346

    Article  Google Scholar 

  40. S. Daoud, N. Bioud, N. Lebga, J. Cent, South Univ 21, 58–64 (2014). https://doi.org/10.1007/s11771-014-1915-6

    Article  Google Scholar 

  41. P.K. Jha, M. Talati, Phys. Status Solidi B 239, 291 (2003). https://doi.org/10.1002/pssb.200301829

    Article  ADS  Google Scholar 

  42. M.E. Fine, L.D. Brown, H.L. Marcus, Scr. Mater. 18, 951 (1984). https://doi.org/10.1016/0036-9748(84)90267-9

    Article  Google Scholar 

  43. T. Özer, Can. J. Phys. 98, 357 (2020). https://doi.org/10.1139/cjp-2018-0448

    Article  ADS  Google Scholar 

  44. T.K. Gajaria, S.D. Dabhi, P.K. Jha, Sci. Rep. 9, 5884 (2019). https://doi.org/10.1038/s41598-019-41982-9

    Article  ADS  Google Scholar 

  45. F.B. Baghsiyahi, A. Akhtar, M. Yeganeh, Int. J. Mod. Phys. B 32, 1850207 (2018). https://doi.org/10.1142/S0217979218502077

    Article  ADS  Google Scholar 

  46. N. Bioud, K. Kassali, X.-W. Sun, T. Song, R. Khenata, S. Bin Omran, Mater. Chem. Phys. 203, 362–373 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.016

    Article  Google Scholar 

  47. J.S. Kang, M. Li, H. Wu, H. Nguyen, Y. Hu, Appl. Phys. Lett. 115, 122103 (2019). https://doi.org/10.1063/1.5116025

    Article  ADS  Google Scholar 

  48. N. Bioud, K. Kassali, N. Bouarissa, J. Electron Mater. 46, 2521 (2017). https://doi.org/10.1007/s11664-017-5335-x

    Article  ADS  Google Scholar 

  49. Y. Liu, W.-C. Hu, D.-J. Li, X.-Q. Zeng, C.-S. Xu, Phys. Scr. 88, 045302 (2013). https://doi.org/10.1088/0031-8949/88/04/045302

    Article  ADS  Google Scholar 

  50. S. Daoud, N. Bouarissa, Comput. Condens. Matter. 16, e00359 (2018). https://doi.org/10.1016/j.cocom.2018.e00359

    Article  Google Scholar 

  51. R. Maizi, A.-G. Boudjahem, M. Boulbazine, Russ. J. Phys. Chem. A 93, 2726–2734 (2019). https://doi.org/10.1134/S0036024419130181

    Article  Google Scholar 

  52. S. Daoud, N. Bioud, P.K. Saini, J. Magnes, Alloys 7, 335–344 (2019). https://doi.org/10.1016/j.jma.2019.01.006

    Article  Google Scholar 

  53. Y.L. Gao, W.S. Guan, Y.J. Dong, Semiconductors 54, 1185–1190 (2020). https://doi.org/10.1134/S1063782620100115

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Bouarissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamrani, A., Daoud, S. & Bouarissa, N. First principles study of structural, elastic, and thermodynamic properties of LiAl2X (X = Rh, Pd, Ir and Pt) intermetallic compounds. Eur. Phys. J. B 95, 106 (2022). https://doi.org/10.1140/epjb/s10051-022-00370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00370-5

Navigation