Skip to main content

Topological defect states and phase transitions in mesoscopic superconducting squares with Rashba spin–orbit interaction

Abstract

Based on the spin-generalized Bogoliubov–de Gennes theory, we investigate the topological defect configurations in a mesoscopic superconducting square with spin–orbit (SO) interaction. The mixed even-parity d-wave and extended s-wave components can be obtained by suitable choice of the chemical potential in such a system. We find that several novel types of topological defect states can be generated in the presence of Rashba SO coupling when the external magnetic flux turns on. Unclosed domain-wall states carrying even or odd number of one-component vortices as well as double-quanta skyrmionic patterns can appear for different Rashba SO-coupling strengths. The next-nearest-neighbor hopping effect on the evolution of topological structures is further examined. A skyrmionic chain feature with one-component vortex–antivortex pairs can show up in the present mixed-pairing system. Our investigation may provide useful information for future experiments and shed new light on device designing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The results and data presented in this work can be replicated using the numerical procedures described in the text.]

References

  1. B.J. Baelus, F.M. Peeters, Phys. Rev. B 65, 104515 (2002)

    ADS  Google Scholar 

  2. V.F. Becerra, M.V. Milosevic, Phys. Rev. B 94, 184517 (2016)

    ADS  Google Scholar 

  3. V.F. Becerra, E. Sardella, F.M. Peeters, M.V. Milosevic, Phys. Rev. B 93, 014518 (2016)

    ADS  Google Scholar 

  4. H.-B. Braun, Adv. Phys. 61, 1 (2012)

    ADS  Google Scholar 

  5. P.M.R. Brydon, A.P. Schnyder, C. Timm, Phys. Rev. B 84, 020501(R) (2011)

    ADS  Google Scholar 

  6. R.-F. Chai, G.-Q. Zha, Eur. Phys. J. B 94, 193 (2021)

    ADS  Google Scholar 

  7. L.F. Chibotaru, A. Ceulemans, V. Bruyndoncx, V.V. Moshchalkov, Nature 408, 833 (2000)

    ADS  Google Scholar 

  8. L. Da-Chuan, Y.-Y. Lv, J. Li, B.-Y. Zhu, Q.-H. Wang, H.-B. Wang, P.-H. Wu, NPJ Quantum Mater. 3, 12 (2018)

    ADS  Google Scholar 

  9. P.G. de Gennes, Superconductivity of Metals and Alloys (Addison-Wesley, New York, 1994)

    MATH  Google Scholar 

  10. G. Dresselhaus, A.F. Kip, C. Kittel, Phys. Rev. 95, 568 (1954). (G. Dresselhaus, Phys. Rev. 100, 580 (1955))

    ADS  Google Scholar 

  11. E.T. Filby, A.A. Zhukov, P.A.J. de Groot, M.A. Ghanem, P.N. Bartlett, V.V. Metlushko, Appl. Phys. Lett. 89, 092503 (2006)

    ADS  Google Scholar 

  12. J. Garaud, E. Babaev, Phys. Rev. B 86, 060514 (2012). (Scientific Reports 5, 17540 (2015))

    ADS  Google Scholar 

  13. J. Garaud, E. Babaev, Phys. Rev. Lett. 112, 017003 (2014)

    ADS  Google Scholar 

  14. J. Garaud, E. Babaev, Phys. Rev. B 91, 014510 (2015)

    ADS  Google Scholar 

  15. J. Garaud, J. Carlstrom, E. Babaev, Phys. Rev. Lett. 107, 197001 (2011)

    ADS  Google Scholar 

  16. J. Garaud, J. Carlstrom, E. Babaev, M. Speight, Phys. Rev. B 87, 014507 (2013)

    ADS  Google Scholar 

  17. A.K. Geim, I.V. Grigorieva, S.V. Dubonos, J.G.S. Lok, J.C. Maan, A.E. Filippov, F.M. Peeters, Nature 390, 259 (1997)

    ADS  Google Scholar 

  18. A.K. Geim, S.V. Dubonos, J.G.S. Lok, M. Henini, J.C. Maan, Nature 396, 144 (1998)

    ADS  Google Scholar 

  19. A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, F.M. Peeters, V.A. Schweigert, Nature 407, 55 (2000)

    ADS  Google Scholar 

  20. R. Geurts, M.V. Milosevic, F.M. Peeters, Phys. Rev. Lett. 97, 137002 (2006). (Phys. Rev. B 79, 174508 (2009))

    ADS  Google Scholar 

  21. L.P. Gorkov, E.I. Rashba, Phys. Rev. Lett. 87, 037004 (2001)

    ADS  Google Scholar 

  22. V. Grinenko, P. Materne, R. Sarkar, H. Luetkens, K. Kihou, C.H. Lee, S. Akhmadaliev, D.V. Efremov, S.-L. Drechsler, H.-H. Klauss, Phys. Rev. B 95, 214511 (2017)

    ADS  Google Scholar 

  23. S. Ikegaya, W.B. Rui, D. Manske, Andreas, P. Schnyder, Phys. Rev. Res. 3, 023007 (2021)

    Google Scholar 

  24. K. Jiang, X. Wu, J. Hu, Z. Wang, Phys. Rev. Lett. 121, 227002 (2018)

    ADS  Google Scholar 

  25. M. Kheirkhah, Z. Yan, Y. Nagai, F. Marsiglio, Phys. Rev. Lett. 125, 017001 (2020)

    ADS  MathSciNet  Google Scholar 

  26. K. Kuboki, J. Phys. Soc. Jpn. 70, 2698 (2001)

    ADS  Google Scholar 

  27. W.-C. Lee, S.-C. Zhang, C. Wu, Phys. Rev. Lett. 102, 217002 (2009)

    ADS  Google Scholar 

  28. N.D. Mermin, Rev. Mod. Phys. 51, 591 (1979)

    ADS  Google Scholar 

  29. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990)

    ADS  Google Scholar 

  30. V.V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck, Y. Bruynseraede, Nature 373, 319 (1995)

    ADS  Google Scholar 

  31. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960). (Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984))

    Google Scholar 

  32. M. Sato, S. Fujimoto, Phys. Rev. Lett. 105, 217001 (2010)

    ADS  Google Scholar 

  33. M. Sato, Y. Takahashi, S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009). (Phys. Rev. B 82, 134521 (2010))

    ADS  Google Scholar 

  34. J.D. Sau, R.M. Lutchyn, S. Tewari, S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010)

  35. A.P. Schnyder, S. Ryu, Phys. Rev. B 84, 060504(R) (2011)

    ADS  Google Scholar 

  36. A.P. Schnyder, P.M.R. Brydon, C. Timm, Phys. Rev. B 85, 024522 (2012)

    ADS  Google Scholar 

  37. Y. Tanaka, Y. Mizuno, T. Yokoyama, K. Yada, M. Sato, Phys. Rev. Lett. 105, 097002 (2010)

  38. Y. Tanaka, M. Sato, N. Nagaosa, J. Phys. Soc. Jpn. 81, 011013 (2012)

    ADS  Google Scholar 

  39. M. Veldhorst, C.G. Molenaar, X.L. Wang, H. Hilgenkamp, A. Brinkman, Appl. Phys. Lett. 100, 072602 (2012)

    ADS  Google Scholar 

  40. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003)

    Google Scholar 

  41. C.L.M. Wong, J. Liu, K.T. Law, P.A. Lee, Phys. Rev. B 88, 060504(R) (2013)

    ADS  Google Scholar 

  42. K. Yada, M. Sato, Y. Tanaka, T. Yokoyama, Phys. Rev. B 83, 064505 (2011)

    ADS  Google Scholar 

  43. G.-Q. Zha, Phys. Rev. B 95, 014510 (2017). (Solid State Communications 302, 113730 (2019))

    ADS  Google Scholar 

  44. G.-Q. Zha, EPL 130, 67005 (2020)

    ADS  Google Scholar 

  45. G.-Q. Zha, S.-P. Zhou, B.-H. Zhu, Y.-M. Shi, H.-W. Zhao, Phys. Rev. B 74, 024527 (2006)

    ADS  Google Scholar 

  46. G.-Q. Zha, H.-W. Zhao, S.-P. Zhou, Phys. Rev. B 76, 132503 (2007)

    ADS  Google Scholar 

  47. G.-Q. Zha, L. Covaci, F.M. Peeters, S.-P. Zhou, Phys. Rev. B 92, 094516 (2015)

    ADS  Google Scholar 

  48. H.-M. Zhang, Z.-X. Li, J.-P. Peng, C.-L. Song, J.-Q. Guan, Z. Li, L. Wang, K. He, S.-H. Ji, X. Chen, H. Yao, X.-C. Ma, Q.-K. Xue, Phys. Rev. B 93, 020501(R) (2016)

    ADS  Google Scholar 

  49. L.-F. Zhang, V.F. Becerra, L. Covaci, M.V. Milosevic, Phys. Rev. B 94, 024520 (2016)

    ADS  Google Scholar 

  50. L.-F. Zhang, L. Covaci, M.V. Milosevic, Phys. Rev. B 96, 224512 (2017)

    ADS  Google Scholar 

  51. L.-F. Zhang, Y.-Y. Zhang, G.-Q. Zha, M.V. Milosevic, S.-P. Zhou, Phys. Rev. B 101, 064501 (2020)

    ADS  Google Scholar 

  52. Y. Zhong, Y. Wang, S. Han, Y.-F. Lv, W.-L. Wang, D. Zhang, H. Ding, Y.-M. Zhang, L. Wang, K. He, R. Zhong, J.A. Schneeloch, G.-D. Gu, C.-L. Song, X.-C. Ma, Q.-K. Xue, Sci. Bull. 61, 1239 (2016)

    Google Scholar 

  53. X. Zhu, Phys. Rev. Lett. 122, 236401 (2019)

    ADS  Google Scholar 

  54. A.A. Zyuzin, J. Garaud, E. Babaey, Phys. Rev. Lett. 119, 167001 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grants No. 62171267 and No. 61771298.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Guo-Qiao Zha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chai, RF., Zha, GQ. Topological defect states and phase transitions in mesoscopic superconducting squares with Rashba spin–orbit interaction. Eur. Phys. J. B 95, 101 (2022). https://doi.org/10.1140/epjb/s10051-022-00369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00369-y