Skip to main content
Log in

Aspiration-driven strategy evolutionary dynamics under strong selection

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

A Publisher Correction to this article was published on 13 September 2022

This article has been updated

Abstract

Strategy update rules based on self-evaluation are very common in practice. Most of the previous studies on the update of aspiration-based self-evaluation strategies were based on the assumption that people’s adjustment intensity was low. Whether the successful propagation of human behavioral traits falls within this parameter is unclear. Therefore, it will be necessary to derive analytical results applicable to any selected intensity. In this paper, we focus on the effect of selection intensity on the level of population cooperation, and mainly focus on strong selection. We derive the results of the analysis for any selection intensity. The results show that under the condition of strong selection intensity, the evolution of cooperative strategy is strongly driven by aspiration, and significantly increase the cooperative strategy proportion compared with the results under weak selection. In addition, there is a critical cost-benefit ratio, which makes the proportion of cooperative strategy decrease sharply. The critical cost-benefit ratio decreases as the value of aspiration increase. However, when the selection intensity was weak, the aspiration value has a little effect on the proportion of cooperative strategies. We also reveal, essentially, the cause of the effect of aspiration value on the proportion of cooperative strategies at stable equilibrium time is the effect of aspiration value on the probability of strategy update under different configurations. In addition, the theoretical results are verified by Monte Carlo numerical simulation and the results are qualitatively consistent for different system sizes and structures. The apparent difference in the level of cooperation between strong and weak selection will be crucial to our basic understanding of human behavior and may lead to new insights into human self-evaluation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The original data of this study are available from the corresponding author upon reasonable request.]

Change history

References

  1. M. Perc, J.J. Jordan, D.G. Rand, Z. Wang, S. Boccaletti, A. Szolnoki, Phys. Rep. 687, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. O. Lewin-Epstein, R. Aharonov, L. Hadany, Nat. Commun. 8, 14040 (2017)

    Article  ADS  Google Scholar 

  3. J. Gore, H. Youk, A. van Oudenaarden, Nature 459, 253 (2009)

    Article  ADS  Google Scholar 

  4. J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  5. R. Axelrod, The Evolution of Cooperation (Basic Books, London, 1984)

    MATH  Google Scholar 

  6. M.A. Nowak, Science 314, 1560 (2006)

    Article  ADS  Google Scholar 

  7. M.A. Nowak, A. Sasaki, C. Taylor, D. Fudenherg, Nature 428, 646 (2004)

    Article  ADS  Google Scholar 

  8. E. Lieberman, C. Hauert, M.A. Nowak, Nature 433, 312 (2005)

    Article  ADS  Google Scholar 

  9. H. Ohtsuki, C. Hauert, E. Lieberman, M.A. Nowak, Nature 441, 502 (2006)

    Article  ADS  Google Scholar 

  10. P.D. Taylor, T. Day, G. Wild, Nature 447, 469 (2007)

    Article  ADS  Google Scholar 

  11. M.A. Nowak, Evolutionary Dynamics Exploring the Equations of Life (Harvard University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  12. G. Szabo, C. Toke, Phys. Rev. E 58, 69 (1998)

    Article  ADS  Google Scholar 

  13. G. Szabo, J. Vukov, A. Szolnoki, Phys. Rev. E 72, 047107 (2005)

    Article  ADS  Google Scholar 

  14. Z.X. Wu, X.J. Xu, Y. Chen, Y.H. Wang, Phys. Rev. E 71, 037103 (2005)

    Article  ADS  Google Scholar 

  15. J. Vukov, G. Szabo, A. Szolnoki, Phys. Rev. E 73, 067103 (2006)

    Article  ADS  Google Scholar 

  16. Z.X. Wu, X.J. Xu, Z.G. Huang, S.J. Wang, Y.H. Wang, Phys. Rev. E 74, 021107 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Z.X. Wu, Y.H. Wang, Phys. Rev. E 75, 041114 (2007)

    Article  ADS  Google Scholar 

  18. J.Y. Guan, Z.X. Wu, Z.G. Huang, Y.H. Wang, Chin. Phys. B 19, 020203 (2010)

  19. X.S. Liu, J.Y. Guan, Z.X. Wu, Chaos Soliton Fract. 56, 106 (2013)

    Article  ADS  Google Scholar 

  20. H. Cheng, Q. Dai, H. Li, X. Qian, M. Zhang, J. Yang, Eur. Phys. J. B 86, 127 (2013)

    Article  ADS  Google Scholar 

  21. X.S. Liu, Z.X. Wu, M.Z.Q. Chen, J.Y. Guan, Eur. Phys. J. B 90, 138 (2017)

    Article  ADS  Google Scholar 

  22. G. He, L. Zhang, C. Huang, H. Li, Q. Dai, J. Yang, EPL 132, 48004 (2020)

    Article  ADS  Google Scholar 

  23. C. Zhao, X. Zhang, Eur. Phys. J. B 94, 112 (2021)

    Article  ADS  Google Scholar 

  24. D. Mao, X. Li, D. Mu, D. Liu, C. Chu, Eur. Phys. J. B 94, 148 (2021)

    Article  ADS  Google Scholar 

  25. R. Sugden, Economics of Rights, Co-operation and Welfare (Palgrave Macmillan, London, 2004)

  26. C. Hauert, M. Doebeli, Nature 428, 643 (2004)

  27. F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005)

    Article  ADS  Google Scholar 

  28. W.X. Wang, J. Ren, G.R. Chen, B.H. Wang, Phys. Rev. E 74, 056113 (2006)

    Article  ADS  Google Scholar 

  29. D.F. Zheng, H.P. Yin, C.H. Chan, P.M. Hui, EPL 80, 18002 (2007)

    Article  ADS  Google Scholar 

  30. W.B. Du, X.B. Cao, M.B. Hu, W.X. Wang, EPL 87, 60004 (2009)

    Article  ADS  Google Scholar 

  31. M.O. Souza, J.M. Pacheco, F.C. Santos, J. Theor. Biol. 260, 581 (2009)

    Article  ADS  Google Scholar 

  32. M.D. Santos, F.L. Pinheiro, F.C. Santos, J.M. Pacheco, J. Theor. Biol. 315, 81 (2012)

    Article  ADS  Google Scholar 

  33. B.Q. Li, Z.X. Wu, J.Y. Guan, Chaos Solitons Fract. 157, 111948 (2022)

    Article  Google Scholar 

  34. X. Chen, L. Wang, Phys. Rev. E 77, 017103 (2008)

    Article  ADS  Google Scholar 

  35. Z. Wang, Mcv Perc, Phys. Rev. E 82, 021115 (2010)

    Article  ADS  Google Scholar 

  36. M.A. Amaral, L. Wardil, M. Perc, J.K.L. da Silva, Phys. Rev. E 94, 032317 (2016)

    Article  ADS  Google Scholar 

  37. X. Wang, C. Gu, J. Zhao, J. Quan, Phys. Rev. E 100, 022411 (2019)

    Article  ADS  Google Scholar 

  38. M.R. Arefin, J. Tanimoto, Phys. Rev. E 102, 032120 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. J. Zhang, B. Hu, Y.J. Huang, Z.H. Deng, T. Wu, Chaos Solitons Fract. 139, 110067 (2020)

    Article  Google Scholar 

  40. M. Perc, Z. Wang, Plos One 5, e15117 (2010)

    Article  ADS  Google Scholar 

  41. J. Du, B. Wu, L. Wang, Sci. Rep. 5, 8014 (2015)

    Article  ADS  Google Scholar 

  42. X. Liu, M. He, Y. Kang, Q. Pan, Phys. Rev. E 94, 012124 (2016)

    Article  ADS  Google Scholar 

  43. J. Quan, Y. Zhou, X. Wang, J.B. Yang, Chaos Solitons Fract. 133, 109634 (2020)

    Article  Google Scholar 

  44. L. Zhou, B. Wu, J. Du, L. Wang, Nat. Commun. 12, 3250 (2021)

    Article  ADS  Google Scholar 

  45. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Grants nos. 11475074, 11975111 and 12047501) and the Fundamental Research Funds for the Central Universities (lzujbky-2019-85).

Author information

Authors and Affiliations

Authors

Contributions

B.-Q. Li discusses ideas with J.-Y. Guan. B.-Q. Li completes the numerical simulation and theoretical calculation. B.-Q. Li wrote the manuscript. The manuscript was revised by J.-Y. Guan.

Corresponding author

Correspondence to Bin-Quan Li.

Additional information

The original online version of this article was revised: The article included an incorrect Open Access licence text which was removed.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BQ., Guan, JY. Aspiration-driven strategy evolutionary dynamics under strong selection. Eur. Phys. J. B 95, 90 (2022). https://doi.org/10.1140/epjb/s10051-022-00356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00356-3

Navigation