Skip to main content
Log in

Emergence of multi-stability and limit cycles in ferromagnetic spin-crossover solids under an oscillating magnetic-field: dynamic mean-field study

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Two dimension (2D) Blume–Emery–Griffiths (BEG) spin-1 model is used to investigate spin-crossover (SCO) and Prussian Blue Analogs (PBAs) solids. The model considered here allows the system to switch between two fundamental spin states named high-spin (HS) and low-spin (LS) states subsequent to the strength of magnetic and elastic interactions which acting on lattice nearest neighbors sites. These interactions are assumed as temperature-dependent due to the system volume changes accompanying with the spin transition phenomenon. In addition, SCO molecules are subject to a variable frequency of magnetic-field lifting the degeneracy in the HS state. A stochastic cooperative dynamics of this BEG-like Hamiltonian, describing the nonequilibrium properties of ferromagnetic SCO solids, is derived from the Glauber approach, with appropriate Arrhenius microscopic transition rates. At the vicinity of the thermal hysteresis loop of the free system (obtained with zero-magnetic field), investigations with variable oscillation frequency of the magnetic-field, h, demonstrated significant changes on the isothermal relaxation curves of the magnetization, m, and the high-spin fraction, \(n_{HS}\), which fall down on dynamical equilibrium characterized by limiting cycles in the spaces m-h and \(n_{HS}\)-h. In addition, the clear evidence of dephasing between the responses of the two order parameters (m and \(n_{HS}\)) and the particular “butterfly” shape of the limiting cycles of the HS fraction, enforces the idea that the non-linear effects, propagating through the interaction parameters, are operating in this system. These behaviors demonstrate that radio-frequency magnetic field can be used in these SCO systems to achieve a reversible switch and control of both magnetization and HS fraction, even if the latter is partial. These results are in direct relation with the intrinsic static multi-stability of the system under static magnetic-field, which is enhanced/revealed by applying an oscillating magnetic-field.

Graphical abstract

The nonequilibrium properties of spin-crossover (SCO) solids are analyzed within 2D Blume–Emery–Griffiths (BEG) spin-1 model in which SCO molecules are subjected to a variable frequency of magnetic-field energy controlled by the parameter \(\lambda \). Within the lattice configuration, to account for spin-phonon interactions, the strengths of magnetic and elastic interactions between nearest neighbors (nn) sites are temperature-dependent. At the vicinity of the thermal hysteresis loop of the free system, the isothermal relaxation curves of the magnetization m and the high-spin fraction, \(n_{HS}\) fall down on dynamical equilibrium characterized by limiting cycles which depend on the initial conditions in the spaces \(m-h\) and \(n_{HS}-h\). The shift phase appears between the response of the two parameters (m and \(n_{HS}\)) which particular non-linear behaviors would seem to stem from the interactions propagating within the system through the interaction parameters. These behaviors revealed that radio-frequency magnetic-field can be used in these SCO systems to achieve a reversible switch and control of both magnetization and HS fraction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Numerical results are obtained with ForTran Code based on evolving system equations and help us to display all Figures reported in this paper, which are available on request by T. D. OKE.]

References

  1. P. Gütlich, H.A. Goodwin, Spin-Crossover in transition Metal Compounds\(I\), \(II\)and\(III\) (Springer, Berlin, 2004), pp. 233–235

  2. J.H. Ammeter, Nov. J. Chem. 4, 631 (1980)

    Google Scholar 

  3. S. Ohkoshi, K. Hashimoto, J. Am. Chem. Soc. 121, 10591 (1999)

    Google Scholar 

  4. S. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, K. Hashimoto, J. Am. Chem. Soc. 128, 5320 (2006)

    Google Scholar 

  5. S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nat. Chem. 3, 564 (2011). https://doi.org/10.1038/nchem.1067

    Article  Google Scholar 

  6. P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. 33, 2024 (1994)

    Google Scholar 

  7. J.M. Herrera, V. Marvand, M. Verdager, J. Marrot, M. kalisz, C. Mathoniere, Angew. Chem. Int. Ed. 43, 5468 (2004)

    Google Scholar 

  8. N. Nègre, C. Conséjo, M. Goiran, A. Bousseksou, F. Varret, J.P. Tuchagues, R. Barbaste, S. Askénazy, J.G. Haasnoot, Phys. B 294–295, 91 (2001)

    ADS  Google Scholar 

  9. H. Tokoro, S.-I. Ohkoshi, K. Hashimoto, Appl. Phys. Lett. 82, 1245 (2003)

    ADS  Google Scholar 

  10. F. Varret, K. Boukheddaden, C. Chong, A. Goujon, B. Gillon, J. Jeftic, A. Hausser, Eur. Phys. Lett. 77, 30007 (2007)

    ADS  Google Scholar 

  11. D.A. Pejakovíc, J.L. Maison, C. Kitamura, J.S. Miller, A.J. Epstein, Polyhedron 20, 1435 (2001)

    Google Scholar 

  12. K. Kato, Y. Moritomo, M. Takata, M. Sakata, M. Umekawa, N. Hamada, S. Ohkoshi, H. Tokoro, K. Hashimoto, Phys. Lett. 91, 255502 (2003)

    Google Scholar 

  13. H. Banerjee, S. Chakraborty, T. Saha-Dasgupta, Inorganics 5, 47 (2017)

    Google Scholar 

  14. A. Gîndulescu, A. Rotaru, J. Linares, M. Dimian, J. Naser, J. Phys: Conf. Ser. 268, 012007 (2011)

    Google Scholar 

  15. M. Nishino, S. Miyashita, P.A. Rikvold, Phys. Rev. B 96, 144425 (2017)

    ADS  Google Scholar 

  16. C. Enashescu, L. Stoleriu, A. Stancu, A. Hausser, Phys. Rev. B 82, 104114 (2010)

    ADS  Google Scholar 

  17. M. Sorai, S. Seki, J. Phys. Chem. Solids 35, 555 (1974)

    ADS  Google Scholar 

  18. M.M. Dîrtu, C. Neuhausen, A.D. Naik, A. Rotaru, L. Spinu, Y. Garcia, Inorg. Chem. 49, 5723 (2010)

    Google Scholar 

  19. W. Nicolazzi, J. Pavlik, S. Bedoui, G. Molnár, A. Bousseksou, Eur. Phys. J. Spec. Topics 222, 1137 (2013)

    ADS  Google Scholar 

  20. M. Paez-Espejo, M. Sy, K. Boukheddaden, J. Am. Chem. Soc. 138, 3202 (2016)

    Google Scholar 

  21. M.A. Halcrow, Spin-Crossover Materials: Properties and Applications (Wiley, New York, 2013)

    Google Scholar 

  22. P. Gütlich, A.B. Gasper, Y. Garcia, Beilstein J. Org. Chem. 9, 342 (2013)

    Google Scholar 

  23. C.M. Quintero, G. Félix, I. Suleimanov, J.S. Costa, G. Molnár, L. Salmon, W. Nicolazzi, A. Bousseksou, Beilstein J. Nanotechnol. 5, 2230 (2014)

    Google Scholar 

  24. E. König, Struct. Bond. 7, 51 (1991)

    Google Scholar 

  25. H. Spiering, N. Willenbacher, J. Phys.: Condens. Matter 1, 10089 (1989)

    ADS  Google Scholar 

  26. Y. Ogawa, A. Mino, S. Keshihara, K. Koshino, T. Ogawa, C. Urano, H. Tagaki, Phys. Rev. Lett. 84, 3181 (2000)

    ADS  Google Scholar 

  27. K. Boukheddaden, J. Linares, H. Spiering, F. Varret, Eur. Phys. J. B 15, 317 (2000)

    ADS  Google Scholar 

  28. K. Boukheddaden, I. Shteto, B. Hôo, F. Varret, Phys. Rev. B 62, 14796 (2000)

    ADS  Google Scholar 

  29. K. Boukheddaden, I. Shteto, B. Hôo, F. Varret, Phys. Rev. B 62, 14806 (2000)

    ADS  Google Scholar 

  30. M. Nishino, S. Miyashita, Phys. Rev. B 63, 174404 (2001)

    ADS  Google Scholar 

  31. M. Nishino, K. Boukheddaden, S. Miyashita, F. Varret, Phys. Rev. B 72, 064452 (2005)

    ADS  Google Scholar 

  32. K. Boukheddaden, M. Nishino, S. Miyashita, F. Varret, Phys. Rev. 72, 014467 (2005)

    ADS  Google Scholar 

  33. H. Watanabe, N. Bréfuel, S. Mouri, J.-P. Tuchagues, E. Collet, and Tanaka. Eur. Phys. Lett. 96, 17004 (2011)

    ADS  Google Scholar 

  34. K. Boukheddaden, M. Sy, F. Varret, M. Paez-Espejo, A. Slimani, F. Varret, Phys. Rev. B 486, 187 (2016)

    Google Scholar 

  35. M. Paez-Espejo, M. Sy, F. Varret, K. Boukheddaden, Phys. Rev. B 89, 024306 (2014)

    ADS  Google Scholar 

  36. C. Chong, F. Varret, K. Boukheddaden, Phys. Rev. B 81, 014104 (2010)

    ADS  Google Scholar 

  37. C. Enachescu, R. Tanasa, A. Stancu, F. Varret, J. Linares, E. Codjovi, Phys. Rev. B 72, 054413 (2005)

    ADS  Google Scholar 

  38. M. Sy, D. Garrot, A. Slimani, M. Paez-Espejo, F. Varret, K. Boukheddaden, Angew. Chem. 55, 1755 (2016)

    Google Scholar 

  39. K. Boukheddaden, Eur. J. Inorg. Chem. https://doi.org/10.1002/ejic.201201093

  40. B. Hôo, K. Boukheddaden, F. Varret, Eur. Phys. J. B 17, 449 (2000)

    ADS  Google Scholar 

  41. A. Slimani, F. Varret, K. Boukheddaden, D. Garrot, H. Oubouchou, S. Kaizaki, Phys. Rev. Lett. 110, 087208 (2013)

    ADS  Google Scholar 

  42. H. Romstedt, A. Hauser, H. Spiering, J. Phys. Chem. Solids 59, 265 (1998)

    Google Scholar 

  43. K. Boukheddaden, F. Varret, S. Salinke, J. Linares, E. Codjovi, Phase Trans. 75, 733 (2002)

    Google Scholar 

  44. S. Mouri, K. Tanaka, S. Bonhommeau, N.O. Moussa, G. Molnár, A. Bousseksou, Phys. Rev. B 78, 174308 (2008)

  45. A. Bousseksou, J. Nasser, J. Linares, K. Boukheddaden, F. Varret, J. Phys. I 2, 1381 (1992)

    Google Scholar 

  46. A. Bousseksou, F. Varret, J. Nasser, J. Phys. I 3, 1463 (1993)

    Google Scholar 

  47. N. Sasaki, T. Kambara, J. Phys. C 15, 1035 (1982)

    ADS  Google Scholar 

  48. A. Bousseksou, N. Nègre, M. Goiran, L. Salmon, J.-P. Tuchagues, M.-L. Boillot, K. Boukheddaden, F. Varret, Eur. Phys. J. B 13, 451 (2000)

    ADS  Google Scholar 

  49. A. Bousseksou, F. Varret, M. Goiran, K. Boukheddaden, J.-P. Tuchagues, Top. Curr. Chem. 235, 65 (2004)

    Google Scholar 

  50. A. Bousseksou, K. Boukheddaden, M. Goiran, C. Consejo, M.-L. Boillot, J.-P. Tuchagues, Phys. Rev. 65, 172412 (2002)

    ADS  Google Scholar 

  51. S. Bonhommeau, G. Molnár, M. Goiran, K. Boukheddaden, A. Bousseksou, Phys. Rev. B 74, 064424 (2006)

    ADS  Google Scholar 

  52. J.L. Her, Y.H. Matsuda, M. Nakano, Y. Niva, Y. Inada, J. Appl. Phys. 111, 053921 (2012)

    ADS  Google Scholar 

  53. Y. Garcia, O. Kahn, J.-P. Ader, A. Buzdin, Y. Meurdesoif, M. Guillot, Phys. Lett. A 271, 145 (2000)

    ADS  Google Scholar 

  54. S.B. Ogou, T.D. Oke, F. Hontinfinde, K. Boukheddaden, Adv. Theory Simul. 2, 1800192 (2019)

    Google Scholar 

  55. T.D. Oke, M. Ndiaye, F. Hontinfinde, K. Boukheddaden, Eur. Phys. J. B 94, 38 (2021)

    ADS  Google Scholar 

  56. T.D. Oke, F. Hontinfinde, K. Boukheddaden, Eur. Phys. J. B 86, 271 (2013)

    ADS  Google Scholar 

  57. T.D. Oke, F. Hontinfinde, K. Boukheddaden, Appl. Phys. A 120, 309 (2015)

    ADS  Google Scholar 

  58. T.D. Oke, F. Hontinfinde, K. Boukheddaden, Comput. Condens. Matter 9, 27 (2016)

    Google Scholar 

  59. M. Nishino, K. Boukheddaden, S. Miyashita, F. Varret, Polyhedron 24, 2852 (2005)

    Google Scholar 

  60. M. Nishino, K. Boukheddaden, S. Miyashita, F. Varret, Phys. Rev. B, 68, 224402 (2003) (references therein)

  61. G. D’Avino, A. Painelli, K. Boukheddaden, Phys. Rev. B 84, 104119 (2011)

    ADS  Google Scholar 

  62. T. Sauer, Numerical Analysis, 2nd edn. (Pearson Education, Inc., Hoboken, 2012)

    MATH  Google Scholar 

  63. R.L. Burden, J.D. Faires, Numerical Analysis, 9th edn. (Cengage, Boston, 2010)

    MATH  Google Scholar 

  64. A. Quarteroni, R. Sacco, F. Saleri, Méthodes Numériques: Algorithmes, analyse et applications (Springer-Verlag, Milano, 2007)

    MATH  Google Scholar 

  65. S.D. Conte, C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach, 3rd edn. (McGraw-Hill, New-York, 1980)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by ANR (Agence Nationale de la Recherche Scientifique), grant number Mol-CoSM N\(^\circ \) ANR-20-CE07-0028-02 and the Universities of Versailles and Paris-Saclay-UPSAY, the CNRS (Centre National de la Recherche Scientifique) and LIA (International Associate French Japan Laboratory). T.D. OKE acknowledges financial support from the “Groupe d’Etudes de la Matière Condensée” (GEMaC) of the “Université de Versailles Saint-Quentin” during a visit.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contribute to the present work in the calculations and in the manuscript writing process.

Corresponding authors

Correspondence to T. D. Oke or K. Boukheddaden.

Ethics declarations

Conflict of interest

All authors approve for submission and declare that they have no known competing financial interests as well as no conflict of personal relationships that could have influenced the obtained results. The authors declare that this original manuscript is not currently being considered for publication elsewhere.

Additional information

We dedicate the present work to the memory of our colleague Dr. Yogendra Singh who passed away prematurely these days.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 6992 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oke, T.D., Ogou, S.B., Hontinfinde, F. et al. Emergence of multi-stability and limit cycles in ferromagnetic spin-crossover solids under an oscillating magnetic-field: dynamic mean-field study. Eur. Phys. J. B 95, 96 (2022). https://doi.org/10.1140/epjb/s10051-022-00354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00354-5

Navigation