Skip to main content
Log in

Ensemble averaging versus non-self-averaging: survival probability in the presence of traps-sinks

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We consider nonstationary diffusion in a medium with static random traps-sinks. We address the problem of self-averaging of the survival probability (or concentration) of the ensemble of \(N\) particles in the fluctuation regime in the long-time limit. We demonstrate that the relative standard deviation of the survival probability decreases with the number of engaged particles as \(N^{ - 1/2}\) and increases with time as a stretched exponential \(\approx \exp \left[ {const_{d,\,1} t^{{d/\left( {d + 2} \right)}} } \right]\). Therefore, the survival probability is self-averaging in parameter \(N\) and is strongly non-self-averaging over time \(t\). To measure the concentration with the required accuracy at the required time of observation \(t_{0}\), the initial number of particles \(N_{0}\) must be exponentially large in \(t_{0}\). At later times \(t > t_{0}\) the relative fluctuations continue to diverge exponentially beyond the required accuracy. In the limit of high dimensions, there is no tendency to restore self-averaging over time in the ensemble of \(N\) particles. The solution in 1D is exact. In higher dimensions, the leading exponential term of the solution is exact.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated or analyzed during this study are included in this published article.]

References

  1. A.A. Ovchinnikov, S.F. Timashev, A.A. Belyy, Kinetics of Diffusion-Controlled Chemical Processes (Nova Science Publishers, Hauppauge, NY, 1989)

    Google Scholar 

  2. V.M. Kenkre, P. Reineker, Exciton Dynamics in Molecular Crystals and Aggregates (Springer, Berlin, 1982), p. 111

    Book  Google Scholar 

  3. S. Havlin, D. Ben-Avraham, Adv. Phys. 51, 187 (2002)

    Article  ADS  Google Scholar 

  4. J. Rudnick, G. Gaspari, Elements of the Random Walk: An Introduction for Advanced Students and Researchers (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  5. P. Krapivsky, S. Redner, E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  6. M.V. Smoluchowski, Phys. Z. 17, 557 (1916)

    ADS  Google Scholar 

  7. B. Y. Balagurov, V. G. Vaks, Zh. Eksp. Teor. Fiz. 65, 1939 (1973) [Sov. Phys. JETP 38, 968 (1974)].

  8. A.A. Ovchinnikov, Y.B. Zeldovich, Chem. Phys. 28, 215 (1978)

    Article  Google Scholar 

  9. M.D. Donsker, S.R.S. Varadhan, Commun. Pure Appl. Math. 32, 721 (1979)

    Article  Google Scholar 

  10. P. Grassberger, I. Procaccia, J. Chem. Phys. 77, 6281 (1982)

    Article  ADS  Google Scholar 

  11. B. Meerson, P. V. Sasorov, A. Vilenkin, J. Stat. Mech. 053201 (2018).

  12. Y. B. Zeldovich, A. A. Ovchinnikov, Zh. Eksp. Teor. Fiz. 74, 1588 (1978) [Sov. Phys. JETP 47, 829 (1978)].

  13. C.H. Gochanour, H.C. Andersen, M.D. Fayer, J. Chem. Phys. 70, 4254 (1979)

    Article  ADS  Google Scholar 

  14. R.F. Loring, H.C. Andersen, M.D. Fayer, J. Chem. Phys. 76, 2015 (1982)

    Article  ADS  Google Scholar 

  15. K.A. Pronin, Sov. J. Theor. Math. Phys. 61, 1249 (1984)

    Article  Google Scholar 

  16. S.F. Burlatskii, K.A. Pronin, J. Phys. A 22, 531 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. A. Ovchinnikov, K. A. Pronin, Zh. Eksp. Teor. Fiz. 88, 921 (1985) [Sov. Phys. JETP 61, 541 (1985)].

  18. A.A. Ovchinnikov, K.A. Pronin, J. Phys. C 18, 5391 (1985)

    Article  ADS  Google Scholar 

  19. K.A. Pronin, Physica B 141, 76 (1986)

    Article  Google Scholar 

  20. K.A. Pronin, Russ. J. Phys. Chem. B 3, 309 (2009)

    Article  Google Scholar 

  21. K.A. Pronin, Russ. J. Phys. Chem. B 10, 327 (2016)

    Article  Google Scholar 

  22. K.A. Pronin, Phys. Rev. E 101, 022132 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. I.M. Lifshits, S.A. Gredeskul, L.A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, NY, 1988)

    Google Scholar 

  24. J. Köhler, P. Reineker, Chem. Phys. 146, 415 (1990)

    Article  Google Scholar 

  25. D.H. Dunlap, R.A. LaViolette, P.E. Parris, J. Chem. Phys. 100, 8293 (1994)

    Article  ADS  Google Scholar 

  26. A. Hansen, J. Kertesz, Phys. Rev. E 53, R5541 (1996)

    Article  ADS  Google Scholar 

  27. S.N. Majumdar, A. Comtet, Phys. Rev. Lett. 89, 060601 (2002)

    Article  ADS  Google Scholar 

  28. M. Serva, Physica A 332, 387 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. S.N. Majumdar, R.M. Ziff, Phys. Rev. Lett. 101, 050601 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Dentz, D. Bolster, T. Le Borgne, Phys. Rev. E 80, 010101(R) (2009)

    Article  ADS  Google Scholar 

  31. L.P. Sanders, T. Ambjörnsson, J. Chem. Phys. 136, 175103 (2012)

    Article  ADS  Google Scholar 

  32. A.M. Berezhkovskii, A. Szabo, J. Chem. Phys. 139, 121910 (2013)

    Article  ADS  Google Scholar 

  33. A. Efrat, M. Schwartz, Physica A 414, 137 (2014)

    Article  ADS  Google Scholar 

  34. L. Luo, L.-H. Tang, Phys. Rev. E 92, 042137 (2015)

    Article  ADS  Google Scholar 

  35. T. Akimoto, E. Barkai, K. Saito, Phys. Rev. Lett. 117, 180602 (2016)

    Article  ADS  Google Scholar 

  36. N. Sano, Solid-State Electron. 128, 25 (2017)

    Article  ADS  Google Scholar 

  37. K.A. Pronin, Phys. Rev. E 100, 052144 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. T.C. Lubensky, Phys. Rev. A 30, 2657 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  39. S.R. Renn, Nucl. Phys. B 275, 273 (1986)

    Article  ADS  Google Scholar 

  40. C. Monthus, G. Oshanin, A. Comtet, S.F. Burlatsky, Phys. Rev. E 54, 231 (1996)

    Article  ADS  Google Scholar 

  41. D.S. Dean, S. Gupta, G. Oshanin, A. Rosso, G. Schehr, J. Phys. A 47, 372001 (2014)

    Article  Google Scholar 

  42. B. Yuste, G. Oshanin, K. Lindenberg, O. Benichou, J. Klafter, Phys. Rev. E 78, 021105 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The study was funded by the Institute of Biochemical Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill A. Pronin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronin, K.A. Ensemble averaging versus non-self-averaging: survival probability in the presence of traps-sinks. Eur. Phys. J. B 95, 88 (2022). https://doi.org/10.1140/epjb/s10051-022-00350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00350-9

Navigation