Skip to main content
Log in

First-principles study of the adsorption and dissociation of NO on the Be(0001) surface

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Catalytic reduction of NO by material surface attracts growing interests due to its promising applications in air purification. Here, the adsorption and dissociation behaviors of single NO molecule on the Be(0001) surface were systematically investigated using first-principles calculations. Through potential energy surface calculations, we found that NO molecule can adsorb on the surface without any energy barrier along the vertical channels with N end-on orientation, among which adsorption on the hcp hollow site of the Be(0001) surface is the most energetically favorable. Moreover, the dissociation of NO molecule along the fcc hollow channel was investigated, and it was found that the dissociation process of NO is an activated type with an energy barrier of 0.34 eV, indicating that the reduction of NO on the Be(0001) surface is energetically probable. The electronic structure analyzing of the most stable chemisorption state that locates on the hcp site, along with the sizeable charge redistribution, reveals that the chemisorption of NO on the Be(0001) surface is dominated by the interaction between the molecular orbital 2\(\pi ^*\) of NO molecule and electronic state p of surface Be atom.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The related data have been shown in the figures of the article. The origal data of this study are available from the corresponding author upon reasonable request.]

References

  1. G. Czapski, J. Holcman, B.H.J. Bielski, J. Am. Chem. Soc. 116, 11465 (1994)

    Article  Google Scholar 

  2. B. Srinivasan, S.D. Gardner, Surf. Interface Anal. 26, 1035 (1998)

    Article  Google Scholar 

  3. A. Nilsson, L.G.M. Pettersson, Surf. Sci. Rep. 55, 49 (2004)

    Article  ADS  Google Scholar 

  4. J. Libuda, H.J. Freund, Surf. Sci. Rep. 57, 157 (2005)

    Article  ADS  Google Scholar 

  5. M.J.P. Hopstaken, J.W. Niemantsverdriet, J. Phys. Chem. B 104, 3058 (2000)

    Article  Google Scholar 

  6. J. Jelic, R.J. Meyer, Phys. Rev. B 79, 125410 (2009)

    Article  ADS  Google Scholar 

  7. R. Toyoshima, M. Yoshida, Y. Monya, K. Suzuki, K. Amemiya, K. Mase, B.S. Mun, H. Kondoh, Surf. Sci. 615, 33 (2013)

    Article  ADS  Google Scholar 

  8. K. Ueda, K. Isegawa, K. Amemiya, K. Mase, H. Kondoh, ACS Catal. 8, 11663 (2018)

    Article  Google Scholar 

  9. S. Abujarada, A. Walton, A. Thomas, U.K. Chohan, S.P.K. Koehler, Phys. Chem. Chem. Phys. 21, 10939 (2019)

    Article  Google Scholar 

  10. B.A. Baraiya, V. Mankad, P.K. Jha, Surf. Sci. 690, 121467 (2019)

    Article  Google Scholar 

  11. P.S. Moussounda, M. Ndollo, T. Dintzer, J.C.M. Nkouka, F. Garin, Phys. Scr. 87, 055601 (2013)

    Article  ADS  Google Scholar 

  12. X. Huang, S.E. Mason, Surf. Sci. 621, 23 (2014)

    Article  ADS  Google Scholar 

  13. S. Zalkind, M. Polak, N. Shamir, Surf. Sci. 385, 318 (1997)

    Article  ADS  Google Scholar 

  14. F.S. Argentina, G.R. Longhurst, V. Shestakov, H. Kawamura, J. Nucl. Mater. 283–287, 43 (2000)

    Article  Google Scholar 

  15. S. Zalkind, M. Polak, N. Shamir, Surf. Sci. 513, 501 (2002)

  16. J.C. Boettger, S.B. Trickey, Phys. Rev. B 34, 3604 (1986)

    Article  ADS  Google Scholar 

  17. P. Zhang, B. Sun, Y. Yang, Phys. Rev. B 79, 165416 (2009)

    Article  ADS  Google Scholar 

  18. S. Wang, Y. Yang, B. Sun, R. Li, P. Zhang, Phys. Rev. B 80, 115434 (2009)

    Article  ADS  Google Scholar 

  19. S. Wang, Y. Yang, B. Sun, R. Li, S. Liu, P. Zhang, Mod. Phys. Lett. B 24, 859 (2010)

    Article  ADS  Google Scholar 

  20. Y. Li, Y. Yang, B. Sun, Y. Wei, P. Zhang, Phys. Lett. A 375, 2430 (2011)

    Article  ADS  Google Scholar 

  21. S. Wang, P. Zhang, J. Zhao, S. Li, P. Zhang, Phys. Lett. A 375, 3208 (2011)

    Article  ADS  Google Scholar 

  22. Y. Yang, Y. Li, S. Wang, P. Zhang, J. Appl. Phys. 115, 213511 (2014)

    Article  ADS  Google Scholar 

  23. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  24. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  26. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  27. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Weinert, J.W. Davenport, Phys. Rev. B 45, 13709 (1992)

    Article  ADS  Google Scholar 

  29. L. Bengtsson, Phys. Rev. B 59, 12301 (1999)

    Article  ADS  Google Scholar 

  30. E. Wachowicz, A. Kiejna, J. Phys.: Condens. Matter 13, 10767 (2001)

    ADS  Google Scholar 

  31. K.P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, New York, 1979)

    Book  Google Scholar 

  32. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990)

    Google Scholar 

  33. W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Numerical calculations were performed by S. Wang. Both authors contributed equally to the discussion and physical interpretation of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Shuangxi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, P. First-principles study of the adsorption and dissociation of NO on the Be(0001) surface. Eur. Phys. J. B 95, 81 (2022). https://doi.org/10.1140/epjb/s10051-022-00344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00344-7

Navigation