Skip to main content
Log in

Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A circuit made of a phototube in series with a linear resistor connected in parallel to a resistor–capacitor shunted Josephson junction (JJ) is proposed to describe a neuron sensitive to external illuminations. The neuronal circuit based on JJ actuated by a photocurrent is analytically, numerically and experimentally investigated in this paper. The stability of the equilibrium points obtained from the rate equations describing the neuronal circuit based on JJ actuated by a photocurrent is studied. The hysteresis loop widths of current–voltage curves increase with the increase of the damping parameter due to the linear resistor in series with phototube for a constant phototube voltage. Whereas the hysteresis loop of current–voltage curves shifts on the left with the increase of constant phototube voltage. Periodic spiking oscillations, periodic bursting oscillations, continuous spiking oscillations, chaotic spiking oscillations, and chaotic oscillations are found during the numerical analysis by varying the damping parameter due to the linear resistor in series with the phototube and modulation parameters of a sinusoidal voltage of phototube. Finally, the numerical analysis results are confirmed by the microcontroller implementation of a neuronal circuit based on JJ neuron actuated by a photocurrent.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We have no associated data.]

References

  1. C.J. Schwiening, A brief historical perspective: Hodgkin and Huxley. J. Physiol. 590, 2571–2575 (2012)

    Article  Google Scholar 

  2. C. Morris and H. Lecar, Voltage oscillations in the barnacle gian t muscle fiber, biophysical journal 35, 193–213 (1981).

  3. H. Gu, Biological experimental observations of an unnoticed chaos as simulated by the Hindmarsh-Rose model. PLoS ONE 8, e81759–e81770 (2013)

    Article  ADS  Google Scholar 

  4. E.M. Izhikevich, Simple model of spinking neurous, IEEET transaction on. Neural Netw. 15, 1063–1070 (2004)

    Article  Google Scholar 

  5. E.M. Izhikevich, R. FitzHugh, Fitzhugh-nagumo model. Scholarpedia 1, 1349–1352 (2006)

    Article  ADS  Google Scholar 

  6. H. Bao, Z. Hua, H. Li, Mo. Chen, B. Bao, Memristor-based hyperchaotic maps and application in AC-GANs. IEEE Trans. Industr. Inf. (2021). https://doi.org/10.1109/TII.2021.3119387

    Article  Google Scholar 

  7. Y. Zhang, N. Wang C, J. Tang, et al., Phase coupling synchronization of FHN neurons connected by a Josephson junction, Sci. China Technol. Sci. 63, 2328–2338 (2020).

  8. E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    Article  Google Scholar 

  9. S.K. Dana, D.C. Sengupta, C.K. Hu, Spiking and bursting in Josephson junction. IEEE Trans. Circuits Syst. 53, 1031–1034 (2006)

    Article  Google Scholar 

  10. A. Mishra, S. Ghosh, S.K. Dana, T. Kapitaniak, C. Hens, Neuron-like spiking and bursting in Josephson junctions: a review. Chaos 31, 052101–052108 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. Q. Xu, X. Tan, D. Zhu, H. Bao, B. Bao, Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit. Chaos, Solitons Fractals 141, 110353 (2020)

    Article  MathSciNet  Google Scholar 

  12. C. Hens, P. Pal, S.K. Dana, Bursting dynamics in a population of oscillatory and excitable Josephson junction. Phys. Rev. E 92, 022915–022924 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. K.S. Ojo, A.O. Adelakun, A.A. Oluyinka, excitable Josephson junctions, Synchronisation of cyclic coupled Josephson junctions and its microcontroller-based implementation. Pramana-J. Phys. 92(77), 92–98 (2019)

    Google Scholar 

  14. Y. Xua, Y. Guo, G. Ren, Jun Ma, Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427–125439 (2020)

    MathSciNet  MATH  Google Scholar 

  15. S. Guo, C. Wang, J. Ma et al., Transmission of blocked electric pulses in a cable neuron model by using an electric field. Neurocomputing 216, 627–637 (2016)

    Article  Google Scholar 

  16. K. Li, H. Bao, H. Li, J. Ma, Z. Hua, B. Bao, Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Industr. Inf. (2021). https://doi.org/10.1109/TII.2021.3086819

    Article  Google Scholar 

  17. M. Lv, C. Wang, G. Ren et al., Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Google Scholar 

  18. Z. Tabekoueng Njitacke, J. Awrejcewicz, B. Ramakrishnan, K. Rajagopal and J. Kengne, Hamiltonian energy computation and complex behavior of a small heterogeneous network of three neurons: circuit implementation, Nonlinear Dynamics 107, 2867–2886 (2022).

  19. N. F. Fotie Foka, B. Ramakrishnan, A. Rodrigue Tchamda, S. Takougang Kingni, K. Rajagopal and V. Kamgang Kuetche, Dynamical analysis of Josephson junction neuron model driven by a thermal signal and its digital implementation based on microcontroller, Eur. Phys. J. B 94, 234–240 (2021).

  20. Z. Tabekoueng Njitacke, B.N. Koumetio, B. Ramakrishnan, G. D. Leutcho, T. Fonzin Fozin, N. Tsafack, K. Rajagopal and J. Kengne, Hamiltonian energy and coexistence of hidden firing patterns from bidirectional coupling between two different neurons. Cogn Neurodyn (2021). https://doi.org/10.1007/s11571-021-09747-1.

  21. Y. Liu, W.-J. Xu, J. Ma, F. Alzahrani, A. Hobiny, A new photosensitive neuron model and its dynamics, frontiers of information technology & electronic. Engineering 21, 1387–1396 (2020)

    Google Scholar 

  22. Z. Yao, P. Zhou, Z. Zhu, J. Ma, Phase synchronization between a light-dependent neuron and a thermosensitive neuron. Neurocomputing 423, 518–534 (2021)

    Article  Google Scholar 

  23. Y. Xu, M. Liu, Z. Zhu, J. Ma, Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chin. Phys. B 29, 098704–098715 (2020)

    Article  ADS  Google Scholar 

  24. P. Crotty, K. Segall, D. Aschult, Modeling biological neurons with Josephson junctions. BMC Neurosci. 10, 44–44 (2009)

    Article  Google Scholar 

  25. P. Crotty, D. Schult, K. Segall, Josephson junction simulation of neurons. Phys. Rev. E 82, 011914–011921 (2010)

    Article  ADS  Google Scholar 

  26. Q. Xu, S. Cheng, Z. Ju, M. Chen, H. Wu, Asymmetric coexisting bifurcations and multi-stability in an asymmetric memristive diode-bridge-based jerk circuit. Chin. J. Phys. 70, 69–81 (2021)

    Article  MathSciNet  Google Scholar 

  27. J.M. Shainline, S.M. Buckley, R.P. Mirins, S.W. Nam, Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7, 034013–034039 (2017)

    Article  ADS  Google Scholar 

  28. M.L. Schneider, C.A. Donnelly, S.E. Russek, B. Baek, M.R. Pufall, P.F. Hopkins, P.D. Dresselhaus, S.P. Benz, W.H. Rippard, Ultralow power artificial synapses using nanotexture magnetic Josephson junction. Sci. Adv. 4, e17011329–e17011336 (2018)

    Article  ADS  Google Scholar 

  29. J. Ma, J. Tang, A review for dynamics in neuron and neuronal network. Nonlinear Dyn. (2017). https://doi.org/10.1007/s11071-017-3565-3

    Article  MathSciNet  Google Scholar 

  30. J. Mishra, Analysis of the Fitzhugh Nagumo mode with a new numerical scheme. Discrete Contin. Dynam. Systems 13, 781–795 (2020)

    Article  Google Scholar 

  31. Y. Liu, Y. Xu, J. Ma, Synchronization and spatial patterns in light-dependent neural network. Communication in Nonlinear science and Numerical Simulation 89, 105297–105311 (2020)

    Article  MathSciNet  Google Scholar 

  32. Q. Xu, Y. Lin, B. Bao, M. Chen, Multiple attractors in a non-ideal active voltage- controlled memristor based Chua’s circuit. Chaos, Solitons Fractals 83, 186–200 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. S. T. Kingni, K. Rajagopal, S. Çiçek, A. Cheukem, V. Kamdoum Tamba and J. G. Fautso Kuiate, Dynamical analysis, FPGA implementation and its application to chaos based random number generator of a fractal Josephson junction with unharmonic current-phase relation, Eur. Phys. J. B 93, 44–55 (2020).

  34. T. Liu, H. Yan, S. Banerjee, J.A. Mou, Fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation. Chaos, Solitons Fractals 145, 110791–110802 (2021)

    Article  MathSciNet  Google Scholar 

  35. A. Silva-Juárez, E. Tlelo-Cuautle, L.G. de la Fraga, R. Li, FPAA-based implementation of fractional-order chaotic oscillators using first-order active filter blocks. J. Adv. Res. 25, 77–85 (2020)

    Article  Google Scholar 

  36. Garcia-Ruiz, M. A., & Mancilla, P. C. S. DIY Microcontroller Projects for Hobbyists: The ultimate project-based guide to building real-world embedded applications in C and C++ programming: Packt Publishing Ltd (2021).

Download references

Acknowledgements

This work is partially funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India via funding number CIT/CNS/2021/RD/064.

Author information

Authors and Affiliations

Authors

Contributions

NFFF and BR developed the system under study and theoretically analyzed its rate equations. ACC and STK did the microcontroller implementation of the system under study. AFT and VKK participated in the data analysis at different stages. All authors contributed to the interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to Alain Francis Talla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foka, N.F.F., Ramakrishnan, B., Chamgoué, A.C. et al. Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation. Eur. Phys. J. B 95, 91 (2022). https://doi.org/10.1140/epjb/s10051-022-00343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00343-8

Navigation