Skip to main content
Log in

Effects of strains on electronic and magnetic properties in V-, Cr- and Mn-doped GaSb

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

To explore effective means to raise Curie temperature (TC) of diluted magnetic semiconductors (DMSs), we studied the effects of strains on electronic and magnetic properties of V-, Cr- and Mn-doped GaSb by first-principles calculations, systematically. Results indicated that VGa, CrGa and MnGa substitutions can induce 2.0 \(\mu_{{\text{B}}}\), 3.0 \(\mu_{{\text{B}}}\) and 4.0 \(\mu_{{\text{B}}}\) total local magnetic moments, respectively, which are not affected by strains, while the moments contributed by V-d, Cr-d and Mn-d electrons increase with increasing strains. Magnetic interactions between VGas for nearest-neighbors (N) and next neared-neighbors (NN) structures are always anti-ferromagnetic (AFM) even with strain. The magnetic couplings of CrGa-CrGa and MnGa-MnGa are ferromagnetic (FM), which can be explained by double-exchange and p–d exchange models, respectively. The large energy differences between AFM and FM states indicate stable ferromagnetism for Cr-doped and Mn-doped GaSb systems. In particular, the compressive strains can enhance FM coupling strengths for NN CrGa–CrGa and MnGa–MnGa compared with that in un-deformed structures. These results may provide newer insights into the regulation of modulating magnetic properties in GaSb.

Graphical abstract

The effect of strain on the electronic structures and magnetic properties of V-, Crand Mn-doped GaSb systems were studied by first-principles calculations. We found that magnetic interactions between VGas are always anti-ferromagnetic (AFM) even with strain engineering, while couplings of CrGa–CrGa and MnGa–MnGa are ferromagnetic (FM), which can be explained by double-exchange and p–d exchange models, respectively. In particular, the compressive strains effectively enhance FM coupling strengths for next-neighbor MnGa–MnGa

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: the paper has no associated data because we have illustrated them in the manuscript.]

References

  1. H. Ohno, Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  3. H. Raebiger, S. Lany, A. Zunger, Phys. Rev. B 79, 165202 (2009)

    Article  ADS  Google Scholar 

  4. J. Neal, A. Behan, R. Ibrahim, H. Blythe, M. Zoese. A. Fox, G. Gehring, Phys. Rev. Lett. 96, 197208 (2006)

  5. Y. Zhu, J. Cao, Z. Yang, R. Wu, Phys. Rev. B 79, 085206 (2009)

    Article  ADS  Google Scholar 

  6. Z. Zhang, B. Partoens, K. Chang, F. Peeters, Phys. Rev. B 77, 155201 (2008)

    Article  ADS  Google Scholar 

  7. T. Chanier, M. Sargolzaei, I. Opahle, K. Koepernik, Phys. Rev. B 73, 134418 (2006)

    Article  ADS  Google Scholar 

  8. K. Sato, P. Dederics, H. Katayama-Yoshida, Europhys. Lett. 61(3), 403 (2003)

    Article  ADS  Google Scholar 

  9. A. Gupta, H. Cao, K. Parekh, K. Rao, A. Raju, and Umesh V. Waghmare, J. Appl. Phys. 101, 09N513 (2007)

  10. F. Da Pieve, S. Di Matteo, T. Rangel, M. Giantomassi, D. Lamoen, G. Rignanese, X. Gonze, Phys. Rev. Lett. 110, 136402 (2013)

    Article  ADS  Google Scholar 

  11. P. Gopal, N.A. Spaldin, Phys. Rev. B 74, 094418 (2006)

    Article  ADS  Google Scholar 

  12. J. You, B. Gu, S. Maekawa, G. Su, Phys. Rev. B 102, 094432 (2020)

    Article  ADS  Google Scholar 

  13. T. Takeda, M. Suzuki, L. Duc Anh, N. T. Tu, T. Schmitt, S. Yoshida, M. Sakano, K. Ishizaka, Y. Takeda, S. Fujimori, M. Seki, H. Tabata, A. Fujimori, W. N. Strocov, M. Tanaka, and M. Kobayashi, Phys. Rev. B 101, 155142 (2020)

  14. T. Takeda, S. Sakamoto, K. Araki. Y. Fujisawa. L. Duc Anh, N. T. Tu, Y. Takeda, S. Fujimori, A. Fujimori, M. Tanaka, M. Kobayashi, Phys. Rev. B 102, 245203 (2020)

  15. S. Goel, L. Duc Anh, N. T. Tu, S. Ohya, and M. Tanaka, Phys. Rev. Mater. 3, 084417 (2019)

  16. S. Sakamoto, N. T. Tu, Y. Takeda, S. Fujimori, P. N. Hai, L. Duc Anh, Y. Wakabayashi, G. Shibata, M. Horio, K. Ikeda, Y. Saitoh, H. Yamagami, M. Tanaka, and A. Fujimori, Phys. Rev. B 100, 035204 (2019)

  17. K. Sato, P.H. Dederichs, H. Datayama-Yoshida, J. Kudrnovský, J. Phys. Condens. Matter 16, S5491 (2004)

    Article  ADS  Google Scholar 

  18. M. Kondrin, V. Gizatullin, S. Popova, A. Lyapin, V. Brazhkin, V. Ivanov, A. Pronin, Y. Lebed, R. Sadykov, J. Phys. Condens. Matter 23, 446001 (2011)

    Article  ADS  Google Scholar 

  19. A. Pronin, M. Kondrin, V. Gizatullin, O. Sazanova, A. Lyapin, S. Popova, V. Ivanov, J. Phys. Condens. Matter 26, 326001 (2014)

    Article  Google Scholar 

  20. E. Abe, F. Matsukura, H. Yasuda, Y. Ohno, H. Ohno, Physica E 7, 981 (2000)

    Article  ADS  Google Scholar 

  21. G. Boishin, J. Sullivan, L. Whitman, Phys. Rev. B 71, 193307 (2005)

    Article  ADS  Google Scholar 

  22. G. Lawes, A. Risbud, A. Pamirez, R. Seshadri, Phys. Rev. B 71, 045201 (2001)

    Article  ADS  Google Scholar 

  23. A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T. Kaspar, S. Chambers, F. Wilhelm, A. Rogalev, Phys. Rev. Lett. 100, 157201 (2008)

    Article  ADS  Google Scholar 

  24. H. Raebiger, S. Lany, Z. Zunger, Phys. Rev. Lett. 101, 027203 (2008)

    Article  ADS  Google Scholar 

  25. P. Boguslawski, J. Bernholc, Phys. Rev. B 72, 115208 (2005)

    Article  ADS  Google Scholar 

  26. M. Reed, F. Arkun, E. Berkman, N. Elmasry, J. Zavada, M. Luen, M. Reed, S. Bedair, Appl. Phys. Lett. 86, 102504 (2005)

    Article  ADS  Google Scholar 

  27. C. Park, D. Chadi, Phys. Rev. Lett. 94, 127204 (2005)

    Article  ADS  Google Scholar 

  28. B. Roberts, A. Pakhomov, K. Krishnan, J. Appl. Phys. 103, 07D133 (2008)

    Article  Google Scholar 

  29. T. Hu, F. Jia, G. Zhao, J. Wu, A. Stroppa, W. Ren, Phys. Rev. B 97, 235404 (2018)

    Article  ADS  Google Scholar 

  30. Q. Yao, J. Cai, W. Tong, S. Gong, J. Wang, X. Wan, C. Duan, J. Chu, Phys. Rev. B 95, 165401 (2017)

    Article  ADS  Google Scholar 

  31. S. Touski, N. Ghobadi, Phys. Rev. B 103, 165404 (2021)

    Article  ADS  Google Scholar 

  32. R. Bondi, S. Lee, G. Hwang, Phys. Rev. B 81, 245206 (2010)

    Article  ADS  Google Scholar 

  33. H. Zheng, B. Yang, D. Wang, R. Han, X. Du, Y. Yan, Appl. Phys. Lett. 104, 132403 (2014)

    Article  ADS  Google Scholar 

  34. X. Marti, V. Skumryev, C. Ferrater, M. García-Cuenca, M. Varela, F. Sánchez, Appl. Phys. Lett. 96, 222505 (2010)

    Article  ADS  Google Scholar 

  35. N. Woodward, N. Nepal, B. Mitchell, I. Feng, J. Li, H. Jiang, J. Lin, J. Zavada, V. Dierolf, Appl. Phys. Lett. 99, 122506 (2011)

    Article  ADS  Google Scholar 

  36. S. Goel, L. Anh, S. Ohya, M. Tanaka, Phys. Rev. B 99, 014431 (2019)

    Article  ADS  Google Scholar 

  37. M. Kondrin, V. Gizatullin, S. Popova, A. Lyapin, V. Brazhkin, V. Ivanov, A. Pronin, Y. Lebed, R. Sadykov, J. Phys. Condens. Mat. 23, 446001 (2011)

    Article  ADS  Google Scholar 

  38. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  39. M. Teter, M. Payne, D. Allan, Phys. Rev. B 40, 12255 (1989)

    Article  ADS  Google Scholar 

  40. D. Pack, H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977)

    Article  ADS  Google Scholar 

  41. A. Droghetti, C.D. Pemmaraju, S. Sanvito, Phys. Rev. B 81, 092403 (2010)

    Article  ADS  Google Scholar 

  42. F. Pan, X. Lin, X. Wang, Chin. Phys. B 30, 096105 (2021)

    Article  ADS  Google Scholar 

  43. O. Orhan, D. O’Regan, Phys. Rev. B 101, 245137 (2020)

    Article  ADS  Google Scholar 

  44. W. Jakowetz, W. Rhle, K. Breuninger, M. Pilkuhn, Phys. Status Solidi A 12, 169 (1972)

    Article  ADS  Google Scholar 

  45. M. Straumanis, C. Kim, J. Appl. Phys. 36, 3822 (1965)

    Article  ADS  Google Scholar 

  46. C.G. Van de Walle, J. Neugebaure, J. Appl. Phys. 95, 3851 (2004)

    Article  ADS  Google Scholar 

  47. K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, Rev. Mod. Phys. 82, 1633 (2010)

    Article  ADS  Google Scholar 

  48. J.B. Goodenough, Phys. Rev. 100, 564 (1955)

    Article  ADS  Google Scholar 

  49. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  50. C. Zener, Phys. Rev. 81, 440 (1951)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11764032 and 11665018).

Author information

Authors and Affiliations

Authors

Contributions

FP: writing, original draft preparation, original idea; XL and XW: funding acquisition, reviewing and editing. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Feng-chun Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Fc., Lin, Xl. & Wang, Xm. Effects of strains on electronic and magnetic properties in V-, Cr- and Mn-doped GaSb. Eur. Phys. J. B 95, 79 (2022). https://doi.org/10.1140/epjb/s10051-022-00341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00341-w

Navigation