Skip to main content
Log in

Dependence of cuprous oxide conductivity on metal doping: a hybrid density functional simulation

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Multiple metallic elements were screened as doping agents to alternate conductivity in cuprous oxide (Cu2O). Energetic, charge transition levels and optical properties of Be, Mg, Ca, Sr, Zn, Cd, Hg, Al, Ga, and In substitutionally doped Cu2O systems were investigated based on first principles methods. Results of formation energy calculation under both Cu-rich and Cu-poor conditions indicate the easy incorporation of 2A (Be, Mg, Ca, and Sr) group impurities into the crystal lattice of Cu2O under both conditions. However, 3A (Al, Ga, and In) group impurities could be incorporated only under Cu-poor conditions. While, the incorporation of Zn, Cd, and Hg in Cu2O is energetically less favorable under both conditions. The calculated charge transition levels of these dopants revealed an n-type conductivity. The calculated work functions show n-type to p-type surface inversion behavior for some doped systems. This can explain the p-type conductivity of Mg-doped Cu2O found experimentally. Furthermore, the optical properties of each system are calculated to investigate the effect of the introduced impurity on Cu2O. This study can help identify potential dopants to use for solar cell fabrication.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All relevant data are available from the corresponding author upon reasonable request.]

References

  1. L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Silicon solar cells: toward the efficiency limits. Adv. Phys. X 4, 1548305 (2019)

    Google Scholar 

  2. P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019)

    Article  ADS  Google Scholar 

  3. M.M. Moharam, E.M. Elsayed, J.C. Nino, R.M. Abou-Shahba, M.M. Rashad, Potentiostatic deposition of Cu2O films as p-type transparent conductors at room temperature. Thin Solid Films 616, 760–766 (2016)

    Article  ADS  Google Scholar 

  4. A. Rakshit, K. Islam, R. Sultana, S. Chakraborty, Effect of oxygen content and crystallization temperature on the insulator-to-metal transition properties of vanadium oxide thin-films. Vacuum 180, 109633 (2020)

    Article  ADS  Google Scholar 

  5. F. He, X. Yin, J. Li, S. Lin, L. Wu, X. Hao, J. Zhang, L. Feng, Characterization of sputtered MoOx thin films with different oxygen content and their application as back contact in CdTe solar cells. Vacuum 176, 109337 (2020)

    Article  ADS  Google Scholar 

  6. S. Li, Z. Shi, Z. Tang, X. Li, Comparison of ITO, In 2 O 3: Zn and In 2 O 3: H transparent conductive oxides as front electrodes for silicon heterojunction solar cell applications. Vacuum 145, 262–267 (2017)

    Article  ADS  Google Scholar 

  7. S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T. Gnanasekaran, Gas sensing properties of PLD made MoO3 films Sens. Actuators B Chem. 94, 189–196 (2003)

    Article  Google Scholar 

  8. S.J. Mezher, M.O. Dawood, O.M. Abdulmunem, M.K. Mejbel, Copper doped nickel oxide gas sensor. Vacuum 172, 109074 (2020)

    Article  ADS  Google Scholar 

  9. M.-J. Hong, Y.-C. Lin, L.-C. Chao, P.-H. Lin, B.-R. Huang, Cupric and cuprous oxide by reactive ion beam sputter deposition and the photosensing properties of cupric oxide metal–semiconductor–metal Schottky photodiodes. Appl. Surf. Sci. 346, 18–23 (2015)

    Article  ADS  Google Scholar 

  10. X. Han, K. Han, M. Tao, n-Type Cu2O by electrochemical doping with Cl. Electrochem. Solid-State Lett. 12, H89 (2009)

    Article  Google Scholar 

  11. S. Dolai, S. Das, S. Hussain, R. Bhar, A.K. Pal, Cuprous oxide (Cu2O) thin films prepared by reactive d.c. sputtering technique. Vacuum 141, 296–306 (2017)

    Article  ADS  Google Scholar 

  12. A.A. Ejigu, L. Chao, Characterization of n-type Cu2O deposited by reactive ion beam sputter deposition. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35, 061205 (2017)

    ADS  Google Scholar 

  13. X.-M. Cai, X.-Q. Su, F. Ye, H. Wang, X.-Q. Tian, D.-P. Zhang, P. Fan, J.-T. Luo, Z.-H. Zheng, G.-X. Liang, V.A.L. Roy, The n-type conduction of indium-doped Cu 2 O thin films fabricated by direct current magnetron co-sputtering. Appl. Phys. Lett. 107, 083901 (2015)

    Article  ADS  Google Scholar 

  14. C. Zhu, M.J. Panzer, Synthesis of Zn: Cu 2 O thin films using a single step electrodeposition for photovoltaic applications. ACS Appl. Mater. Interfaces 7, 5624–5628 (2015)

    Article  Google Scholar 

  15. C.M. McShane, K.-S. Choi, Junction studies on electrochemically fabricated p–n Cu2O homojunction solar cells for efficiency enhancement. Phys. Chem. Chem. Phys. 14, 6112 (2012)

    Article  Google Scholar 

  16. Y.-K. Hsu, J.-R. Wu, M.-H. Chen, Y.-C. Chen, Y.-G. Lin, Fabrication of homojunction Cu2O solar cells by electrochemical deposition. Appl. Surf. Sci. 354, 8–13 (2015)

    Article  ADS  Google Scholar 

  17. M. Sieberer, J. Redinger, P. Mohn, Electronic and magnetic structure of cuprous oxide Cu2O doped with Mn, Fe Co, and Ni: a density-functional theory study. Phys. Rev. B 75, 035203 (2007)

    Article  ADS  Google Scholar 

  18. M. Benaissa, H. Si Abdelkader, G. Merad, Electronic and optical properties of halogen (H= F, Cl, Br)-doped Cu2O by hybrid density functional simulations. Optik 207, 164440 (2020)

    Article  ADS  Google Scholar 

  19. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  20. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003)

    Article  ADS  Google Scholar 

  21. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  22. W. Kohn, L.J. Sham, Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev. 137, A1697–A1705 (1965)

    Article  ADS  Google Scholar 

  23. D.O. Scanlon, G.W. Watson, Uncovering the complex behavior of hydrogen in Cu2O. Phys. Rev. Lett. 106, 186403 (2011)

    Article  ADS  Google Scholar 

  24. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  ADS  Google Scholar 

  25. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  26. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Zemann, Crystal structures, 2nd edition. Vol. 1 by R. W. G. Wyckoff. Acta Crystallogr. 18, 139–139 (1965)

    Article  Google Scholar 

  28. Biccari F (2012) Defects and doping in Cu2O. Lulu Com

  29. S.S.K. Jacob, I. Kulandaisamy, S. Valanarasu, A.M.S. Arulanantham, V. Ganesh, S. AlFaify, A. Kathalingam, Enhanced optoelectronic properties of Mg doped Cu2O thin films prepared by nebulizer pyrolysis technique. J. Mater. Sci. Mater. Electron. 30, 10532–10542 (2019)

    Article  Google Scholar 

  30. S. Mihai, A. Mihai, M.C.-M. Jose, N. Madalina, O. Petre, P. Silviu, C. Maria, M. Mircea, G. Mariuca, Sr doped Cu2O a new p-type material for photovoltaic applications. Rev Roum Chim 63, 425–435 (2018)

    Google Scholar 

  31. K. Matsunaga, T. Tanaka, T. Yamamoto, Y. Ikuhara, First-principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 68, 085110 (2003)

    Article  ADS  Google Scholar 

  32. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, J.V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639–3646 (1987)

    Article  Google Scholar 

  33. L.Y. Isseroff, E.A. Carter, Electronic structure of pure and doped cuprous oxide with copper vacancies: suppression of trap states. Chem. Mater. 25, 253–265 (2013)

    Article  Google Scholar 

  34. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014)

    Article  ADS  Google Scholar 

  35. D.O. Scanlon, G.W. Watson, Uncovering the Complex Behavior of Hydrogen in Cu 2 O. Phys. Rev. Lett. 106, 186403 (2011)

    Article  ADS  Google Scholar 

  36. C.-S. Tan, S.-C. Hsu, W.-H. Ke, L.-J. Chen, M.H. Huang, Facet-dependent electrical conductivity properties of Cu 2 O crystals. Nano Lett. 15, 2155–2160 (2015)

    Article  ADS  Google Scholar 

  37. Y. Jiang, H. Yuan, H. Chen, Enhanced visible light photocatalytic activity of Cu 2 O via cationic–anionic passivated codoping. Phys. Chem. Chem. Phys. 17, 630–637 (2015)

    Article  Google Scholar 

  38. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)

    Article  ADS  Google Scholar 

  39. V. Wang, N. Xu, J.C. Liu, G. Tang, W.-T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code (2019)

Download references

Acknowledgements

This work is supported by La Direction Générale de la Recherche Scientifique et du Développement Technologique.

Author information

Authors and Affiliations

Authors

Contributions

MB: conceptualization, methodology, software, validation, formal analysis, investigation, resources, writing and original draft preparation, visualization. HSA: visualization, validation, writing, review and editing. GM: conceptualization, validation, supervision, project administration.

Corresponding author

Correspondence to Mohammed Benaissa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaissa, M., Si Abdelkader, H. & Merad, G. Dependence of cuprous oxide conductivity on metal doping: a hybrid density functional simulation. Eur. Phys. J. B 95, 82 (2022). https://doi.org/10.1140/epjb/s10051-022-00340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00340-x

Navigation