Skip to main content

Advertisement

Log in

Environment-driven migration enhances cooperation in evolutionary public goods games

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Migration plays a critical role in the evolution of cooperation under the framework of evolutionary game theory. Previous studies have demonstrated that individuals might make their migration decisions based on various information, for example, their current cooperative environments, potential advantages of new places, and their own aspirations. In reality, people may perceive environment information and make decisions based on these information. In this paper, we introduce an environment-driven migration into evolutionary public goods games which are carried out on a two-dimensional plane, where individuals decide whether to migrate according to the probabilities determined by the differences between the local and global cooperative environments. We find that such an environment-driven migration can effectively enhance cooperation. Furthermore, there exists an optimal migration noise that leads to a highest cooperation level. In addition, we also find that appropriate moving speeds and migration tendencies, as well as relatively low population densities in the model are more favorable to the evolution of cooperation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The results are obtained mainly through numerical simulation, and all the related data have been shown in the figures of the article.]

References

  1. H. Dingle, Migration: The Biology of Life on the Move (Oxford University Press, Oxford, 2014)

    Book  Google Scholar 

  2. M.J. Greenwood, Human migration: theory, models, and empirical studies. J. Reg. Sci. 25(4), 521–544 (1985)

    Article  Google Scholar 

  3. A.J. Wolfe, H.C. Berg, Migration of bacteria in semisolid agar. Proc. Natl. Acad. Sci. 86(18), 6973–6977 (1989)

    Article  ADS  Google Scholar 

  4. I. Newton, The Migration Ecology of Birds (Elsevier, Amsterdam, 2010)

    Google Scholar 

  5. O. Brown, Migration and Climate Change (United Nations, New York, 2008)

    Book  Google Scholar 

  6. D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel. Nature 439(7075), 462–465 (2006)

    Article  ADS  Google Scholar 

  7. M.C. Gonzalez, C.A. Hidalgo, A.L. Barabasi, Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  ADS  Google Scholar 

  8. M.H. Vainstein, A.T. Silva, J.J. Arenzon, Does mobility decrease cooperation? J. Theor. Biol. 244(4), 722–728 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. E.A. Sicardi, H. Fort, M.H. Vainstein, J.J. Arenzon, Random mobility and spatial structure often enhance cooperation. J. Theor. Biol. 256(2), 240–246 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. F. Funk, C. Hauert, Directed migration shapes cooperation in spatial ecological public goods games. PLoS Comput. Biol. 15(8), e1006948 (2019)

    Article  ADS  Google Scholar 

  11. S. Dhakal, R. Chiong, M. Chica, R..H. Middleton, Climate change induced migration and the evolution of cooperation. Appl. Math. Comput. 377(125), 090 (2020)

    MathSciNet  MATH  Google Scholar 

  12. A.M. Colman et al., Game Theory and its Applications in the Social and Biological Sciences (Psychology Press, Hove, 1995)

  13. R.A. Johnstone, A.M. Rodrigues, Cooperation and the common good. Philos. Trans. R. Soc. B Biol. Sci. 371(1687), 20150086 (2016)

    Article  Google Scholar 

  14. M. Perc, J.J. Jordan, D.G. Rand, Z. Wang, S. Boccaletti, A. Szolnoki, Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M.A. Nowak, R.M. May, Evolutionary games and spatial chaos. Nature 359(6398), 826–829 (1992)

    Article  ADS  Google Scholar 

  16. J. Hofbauer, K. Sigmund et al., Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  17. G. Szabó, G. Fath, Evolutionary games on graphs. Phys. Rep. 446(4–6), 97–216 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Perc, A. Szolnoki, Coevolutionary games—a mini review. Biosystems 99(2), 109–125 (2010)

    Article  Google Scholar 

  19. M. Perc, P. Grigolini, Collective behavior and evolutionary games—an introduction. Chaos Solitons Fractals 56, 1–5 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M. Perc, J. Gómez-Gardenes, A. Szolnoki, L.M. Floría, Y. Moreno, Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10(80), 20120997 (2013)

    Article  Google Scholar 

  21. L. Liu, X. Chen, A. Szolnoki, Evolutionary dynamics of cooperation in a population with probabilistic corrupt enforcers and violators. Math. Models Methods Appl. Sci. 29(11), 2127–2149 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Perc, A. Szolnoki, Self-organization of punishment in structured populations. New J. Phys. 14(4), 043013 (2012)

    Article  ADS  Google Scholar 

  23. X. Chen, A. Szolnoki, M. Perc, Competition and cooperation among different punishing strategies in the spatial public goods game. Phys. Rev. E 92(1), 012819 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. X. Chen, A. Szolnoki, M. Perc, Probabilistic sharing solves the problem of costly punishment. New J. Phys. 16(8), 083016 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. B. Wu, H.J. Park, L. Wu, D. Zhou, Evolution of cooperation driven by self-recommendation. Phys. Rev. E 100(4), 042303 (2019)

    Article  ADS  Google Scholar 

  26. S. Wang, X. Chen, A. Szolnoki, Exploring optimal institutional incentives for public cooperation. Commun. Nonlinear Sci. Numer. Simul. 79, 104914 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Liu, T. Li, W. Wang, N. Zhao, F. Hang, Impact of strategy-neutral rewarding on the evolution of cooperative behavior. Chaos Solitons Fractals 106, 76–79 (2018)

    Article  ADS  MATH  Google Scholar 

  28. J. Du, Redistribution promotes cooperation in spatial public goods games under aspiration dynamics. Appl. Math. Comput. 363, 124629 (2019)

    MathSciNet  MATH  Google Scholar 

  29. J. Du, L. Tang, Evolution of global contribution in multi-level threshold public goods games with insurance compensation. J. Stat. Mech. Theory Exp. 2018(1), 0132403 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Du, B. Wang, Evolution of global cooperation in multi-level threshold public goods games with income redistribution. Front. Phys. 6, 67 (2018)

    Article  Google Scholar 

  31. L. Zhang, C. Huang, H. Li, Q. Dai, J. Yang, Effects of directional migration for pursuit of profitable circumstances in evolutionary games. Chaos Solitons Fractals 144, 110709 (2021)

    Article  MathSciNet  Google Scholar 

  32. R. Cong, Q. Zhao, K. Li, L. Wang, Individual mobility promotes punishment in evolutionary public goods games. Sci. Rep. 7(1), 1–9 (2017)

    Article  ADS  Google Scholar 

  33. M.H. Vainstein, J.J. Arenzon, Disordered environments in spatial games. Phys. Rev. E 64(5), 051905 (2001)

    Article  ADS  Google Scholar 

  34. G. Szabó, J. Vukov, A. Szolnoki, Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices. Phys. Rev. E 72(4), 047107 (2005)

    Article  ADS  Google Scholar 

  35. H. Guo, X. Li, K. Hu, X. Dai, D. Jia, S. Boccaletti, M. Perc, Z. Wang, The dynamics of cooperation in asymmetric sub-populations. New J. Phys. 22(8), 083015 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  36. W. Yu, Mobility enhances cooperation in the presence of decision-making mistakes on complex networks. Phys. Rev. E 83(2), 026105 (2011)

    Article  ADS  Google Scholar 

  37. H. Cheng, Q. Dai, H. Li, Y. Zhu, M. Zhang, J. Yang, Payoff-related migration enhances cooperation in the prisoner’s dilemma game. New J. Phys. 13(4), 043032 (2011)

    Article  ADS  Google Scholar 

  38. S. Meloni, A. Buscarino, L. Fortuna, M. Frasca, J. Gómez-Gardeñes, V. Latora, Y. Moreno, Effects of mobility in a population of prisoner’s dilemma players. Phys. Rev. E 79(6), 067101 (2009)

    Article  ADS  Google Scholar 

  39. Z. Xiao, X. Chen, A. Szolnoki, Leaving bads provides better outcome than approaching goods in a social dilemma. New J. Phys. 22(2), 023012 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. Z. Wang, A. Szolnoki, M. Perc, Evolution of public cooperation on interdependent networks: The impact of biased utility functions. EPL (Europhys. Lett.) 97(4), 48001 (2012)

    Article  ADS  Google Scholar 

  41. S. Nag Chowdhury, S. Kundu, M. Duh, M. Perc, D. Ghosh, Cooperation on interdependent networks by means of migration and stochastic imitation. Entropy 22(4), 485 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Helbing, W. Yu, Migration as a mechanism to promote cooperation. Adv. Complex Syst. 11(04), 641–652 (2008)

    Article  MATH  Google Scholar 

  43. D. Helbing, W. Yu, The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl. Acad. Sci. 106(10), 3680–3685 (2009)

    Article  ADS  Google Scholar 

  44. P. Buesser, M. Tomassini, A. Antonioni, Opportunistic migration in spatial evolutionary games. Phys. Rev. E 88(4), 042806 (2013)

    Article  ADS  Google Scholar 

  45. T. Wu, F. Fu, Y. Zhang, L. Wang, Expectation-driven migration promotes cooperation by group interactions. Phys. Rev. E 85(6), 066104 (2012)

    Article  ADS  Google Scholar 

  46. X. Chen, A. Szolnoki, M. Perc, Risk-driven migration and the collective-risk social dilemma. Phys. Rev. E 86(3), 036101 (2012)

    Article  ADS  Google Scholar 

  47. M. Cardinot, C. O’Riordan, J. Griffith, A. Szolnoki, Mobility restores the mechanism which supports cooperation in the voluntary prisoner’s dilemma game. New J. Phys. 21(7), 073038 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  48. B. Li, X. Zhao, H. Xia, Promotion of cooperation by hybrid migration mechanisms in the spatial prisoner’s dilemma game. Physica A 514, 1–8 (2019)

    Article  ADS  Google Scholar 

  49. Y.S. Chen, H.X. Yang, W.Z. Guo, Promotion of cooperation by payoff-driven migration. Physica A 450, 506–514 (2016)

    Article  ADS  Google Scholar 

  50. A.I. Houston, Mobility limits cooperation. Trends Ecol. Evol. 8(6), 194–196 (1993)

    Article  Google Scholar 

  51. A. Cardillo, S. Meloni, J. Gómez-Gardenes, Y. Moreno, Velocity-enhanced cooperation of moving agents playing public goods games. Phys. Rev. E 85(6), 067101 (2012)

    Article  ADS  Google Scholar 

  52. A. Antonioni, M. Tomassini, P. Buesser, Random diffusion and cooperation in continuous two-dimensional space. J. Theor. Biol. 344, 40–48 (2014)

    Article  ADS  MATH  Google Scholar 

  53. H. Cheng, Q. Dai, H. Li, X. Qian, M. Zhang, J. Yang, Effects of directional migration on prisoner’s dilemma game in a square domain. Eur. Phys. J. B 86(4), 1–6 (2013)

    Article  ADS  Google Scholar 

  54. A. Szolnoki, A. Antonioni, M. Tomassini, M. Perc, Binary birth-death dynamics and the expansion of cooperation by means of self-organized growth. EPL (Europhys. Lett.) 105(4), 48001 (2014)

    Article  ADS  Google Scholar 

  55. D. Bazeia, M. Ferreira, B. de Oliveira, A. Szolnoki, Environment driven oscillation in an off-lattice May-Leonard model. Sci. Rep. 11(1), 1–8 (2021)

    Article  Google Scholar 

  56. L.L. Jiang, W.X. Wang, Y.C. Lai, B.H. Wang, Role of adaptive migration in promoting cooperation in spatial games. Phys. Rev. E 81(3), 036108 (2010)

    Article  ADS  Google Scholar 

  57. M.H. Vainstein, J.J. Arenzon, Spatial social dilemmas: dilution, mobility and grouping effects with imitation dynamics. Physica A 394, 145–157 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Y. Li, H. Ye, Effect of migration based on strategy and cost on the evolution of cooperation. Chaos Solitons Fractals 76, 156–165 (2015)

    Article  ADS  MATH  Google Scholar 

  59. Y. Li, H. Sun, W. Han, W. Xiong, Evolutionary public goods game on the birandom geometric graph. Phys. Rev. E 101(4–1), 042303 (2020)

  60. J.O. Ledyard, 2. Public Goods: A Survey of Experimental Research (Princeton University Press, Princeton, 2020), pp. 111–194

  61. G. Szabó, C. Tőke, Evolutionary prisoner’s dilemma game on a square lattice. Phys. Rev. E 58(1), 69 (1998)

    Article  ADS  Google Scholar 

  62. J. Vukov, G. Szabó, A. Szolnoki, Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs. Phys. Rev. E 73(6), 067103 (2006)

    Article  ADS  Google Scholar 

  63. A. Szolnoki, M. Perc, G. Szabó, Topology-independent impact of noise on cooperation in spatial public goods games. Phys. Rev. E 80(5), 056109 (2009)

  64. Z. Wang, A. Szolnoki, M. Perc, Percolation threshold determines the optimal population density for public cooperation. Phys. Rev. E 85(3), 037101 (2012)

    Article  ADS  Google Scholar 

  65. Z. Wang, A. Szolnoki, M. Perc, If players are sparse social dilemmas are too: importance of percolation for evolution of cooperation. Sci. Rep. 2(1), 369 (2012)

    Article  ADS  Google Scholar 

  66. T. Reichenbach, M. Mobilia, E. Frey, Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature 448(7157), 1046–1049 (2007)

    Article  ADS  Google Scholar 

  67. A. Szolnoki, M. Perc, Competition of tolerant strategies in the spatial public goods game. New J. Phys. 18(8), 083021 (2016)

    Article  ADS  MATH  Google Scholar 

  68. A. Szolnoki, X. Chen, Alliance formation with exclusion in the spatial public goods game. Phys. Rev. E 95(5), 052316 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant no. 11805021 and the BUPT Excellent Ph.D. Students Foundation under Grant no. CX2021226.

Author information

Authors and Affiliations

Authors

Contributions

SX and LZ: conceptualization, methodology, investigation, writing-original draft. HL: conceptualization, methodology, visualization, Software. QD: writing-original draft, formal analysis, funding acquisition, validation. JY: validation, supervision.

Corresponding authors

Correspondence to Liming Zhang or Qionglin Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Zhang, L., Li, H. et al. Environment-driven migration enhances cooperation in evolutionary public goods games. Eur. Phys. J. B 95, 67 (2022). https://doi.org/10.1140/epjb/s10051-022-00327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00327-8

Navigation