Skip to main content
Log in

Applied electric field instead of pressure in H-based superconductors

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In our desire to give a new suggestion for H-based superconductors experiments we present a theoretical framework for understanding the impact of an applied electric field on pressured hydride superconductors. We study a material at pressure p, when it possesses insulator-superconductor transition, at the respective superconducting critical temperature \(T_{cr}\). The theory shows the applied electric field penetrates the material and forces the Cooper pairs to Bose condensate. If one applies an electric field and then increases the temperature, the theory predicts novel critical temperature \(T^{el}_{cr}\) higher than \(T_{cr}\). Therefore, the system has a higher superconducting critical temperature if we apply an electric field instead of increasing the pressure. The result shows that in the case of carbonaceous sulfur hydride at 234Gpa and near but below critical temperature \(T_c=283K\), applying a sufficiently strong electric field, we can bring the superconducting critical temperature close to 300 K.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The system of equations which describes the electrodynamics of s-wave superconductors (3) is derived by the author. The details are available from the author on request. The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. N. Karchev, Condens. Matter 2, 20 (2017). arXiv:1512.04284

  2. N. Karchev, T. Vetsov, Condensed Matter 2, 31 (2017)

    Article  Google Scholar 

  3. N. Karchev, T. Vetsov, Int. J. Mod. Phys. B 33, 1950384 (2019)

    Article  ADS  Google Scholar 

  4. N.W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968)

    Article  ADS  Google Scholar 

  5. N.W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004)

    Article  ADS  Google Scholar 

  6. P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. B 81, 134506 (2010)

    Article  ADS  Google Scholar 

  7. J.M. McMahon, D.M. Ceperley, Phys. Rev. B 84, 144515 (2011)

    Article  ADS  Google Scholar 

  8. D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, T. Cui, Phys. Rev. B 91, 180502R (2015)

    Article  ADS  Google Scholar 

  9. I. Errea, M. Calandra, C.J. Pickard, J. Nelson, R.J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, F. Mauri, Phys. Rev. Lett. 114, 157004 (2015)

    Article  ADS  Google Scholar 

  10. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015)

    Article  ADS  Google Scholar 

  11. A.P. Drozdov, P.P. Kong, V.S. Minkov, S.P. Besedin, M.A. Kuzovnikov, S. Mozaffari, L. Balicas, F.F. Balakirev, D.E. Graf, V.B. Prakapenka, E. Greenberg, D.A. Knyazev, M. Tkacz, M.I. Eremets, Nature 569, 528 (2019)

    Article  ADS  Google Scholar 

  12. F. Hong et al., Chin. Phys. Lett. 37, 107401 (2020)

    Article  ADS  Google Scholar 

  13. M. Somayazulu, M. Ahart, A.K. Mishra, Z.M. Geballe, M. Baldini, Y. Meng, V.V. Struzhkin, R.J. Hemley, Phys. Rev. Lett. 122, 027001 (2019)

    Article  ADS  Google Scholar 

  14. E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K.V. Lawler, A. Salamat, R.P. Dias, Nature 586, 373 (2020)

    Article  ADS  Google Scholar 

  15. Y. A. Troyan, et al., Adv. Mater. 2006832 (2021)

  16. E. Snider et al., Phys. Rev. Lett. 126, 117003 (2021)

    Article  ADS  Google Scholar 

  17. D. V. Semenok et al., Materials Today 33, (2020)

  18. D. Zhou et al., Sci. Adv. 6, eaax6849 (2020)

  19. W. Chen et al., Nat. Commun. 12, 273 (2021)

    Article  ADS  Google Scholar 

  20. José A. Flores-Livas, Antonio Sanna, and E. K. U. Gross, Eur. Phys. J. B 89, 63 (2016)

  21. L.P. Gor’kov, V.Z. Kresin, Colloquium: Rev. Modern Phys. 90, 011001 (2018)

    Article  ADS  Google Scholar 

  22. Y. Meng, V.V. Struzhkin, R.J. Hemley, Phys. Rev. Lett. 122, 027001 (2019)

    Article  ADS  Google Scholar 

  23. J.A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, M. Eremets, Phys. Rep. 856, 1 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  24. C.J. Pickard, I. Errea, M.I. Eremets, Annu. Rev. Condens. Matter Phys. 11, 1 (2020)

    Article  Google Scholar 

  25. F. London, H. London, Proc. R. Soc. Lond. Ser A 149, 71 (1935)

    Article  ADS  Google Scholar 

  26. V.L. Ginzburg, L.D. Landau, Z. Eksp, Teor. Fiz. 20, 1064 (1950)

    Google Scholar 

  27. L.P. Gor’kov, G.M. Eliashberg, Sov. Phys. JETP 27, 328 (1968)

    ADS  Google Scholar 

  28. R.S. Thompson, Phys. Rev. B 1, 327 (1970)

    Article  ADS  Google Scholar 

  29. M. Tinkham, Introduction to Superconductivity (McGRAW-HIL Inc, New York, 1975)

    Google Scholar 

  30. D.M. Eagles, Phys. Rev. 186, 456 (1969)

    Article  ADS  Google Scholar 

  31. S. Ullah, A.T. Dorsey, Phys. Rev. B 44, 262 (1991)

    Article  ADS  Google Scholar 

  32. Q. Chen, I. Kosztin, B. Jankó, K. Levin, Phys. Rev. Lett. 81, 4708 (1998)

  33. A. Larkin, A. Varlamov, Chapter of Handbook on Superconductivity: Conventional and Unconventional Superconductors edited by K.-H.Bennemann and J.B. Ketterson, (Springer, Berlin, 2002)

  34. I. Ussishkin, S. L. Sondhi, D. A. Huse, Phys. Rev. Lett. 89, 150405 (2002)

  35. R.E. Glover III., M.D. Sherril, Phys. Rev. Lett. 5, 248 (1960)

  36. C.H. Ahn, J.-M. Triscone, J. Mannhart, Nature (London) 424, 1015 (2003)

    Article  ADS  Google Scholar 

  37. D. Matthey, N. Reyren, J.-M. Triscone, T. Schneider, Phys. Rev. Lett. 98, 057002 (2007)

    Article  ADS  Google Scholar 

  38. Kevin A. Parendo, K. H. Sarwa, B.Tan, A. Bhattacharya, M. Eblen-Zayas, N. E. Staley, A. M. Goldman, Phys. Rev. Lett. 94, 197004 (2005)

  39. P. Lipavský, K. Morawetz, J. Koláček, T.J. Yang, Phys. Rev. B 73, 052505 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoum Karchev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karchev, N. Applied electric field instead of pressure in H-based superconductors. Eur. Phys. J. B 95, 46 (2022). https://doi.org/10.1140/epjb/s10051-022-00311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00311-2

Navigation