Skip to main content
Log in

Molecular charge transfer: annealed, pendant, and analyte cases

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Our density functional theory analysis of charge transfer (CT) influence of annealed, pendant, and analyte heteromotifs on the electronic properties of single benzene, naphthalene, and anthracene host molecules reveals two main new findings. First, we established an influence hierarchy with the pendant, annealed, and analyte starting from the highest to the lowest. Second, such sequence is proportional to molecular deformation, and the highest molecular deformation leads to the highest CT and vice versa. Hence, we believe these findings would have practical applications such as modulating conductance or shortening response time to the gate potential in nanodevices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: This manuscript has no associated data because I have illustrated them in the main manuscript.]

Code availability

Not applicable.

References

  1. M.L. Perrin, C.J.O. Verzijl, C.A. Martin, A.J. Shaikh, R. Eelkema, J.H. van Esch, J.M. van Ruitenbeek, J.M. Thijssen, H.S.J. van der Zant, D. Dulić, Large tunable image-charge effects in single-molecule junctions. Nat. Nanotechnol. 8, 282 (2013)

    Article  ADS  Google Scholar 

  2. V. Coropceanu, X.-K. Chen, T. Wang, Z. Zheng, J.-L. Brédas, Charge-transfer electronic states in organic solar cells. Nat. Rev. Mater. 4(11), 689–707 (2019)

    Article  ADS  Google Scholar 

  3. H. Han, Y. Zhang, N. Wang, M.K. Samani, Y. Ni, Z.Y. Mijbil, M. Edwards, S. Xiong, K. Sääskilahti, M. Murugesan, Y. Fu, L. Ye, H. Sadeghi, S. Bailey, Y.A. Kosevich, C.J. Lambert, J. Liu, S. Volz, Functionalization mediates heat transport in graphene nanoflakes. Nat. Commun. 7, 11281 (2016)

    Article  ADS  Google Scholar 

  4. Z.Y. Mijbil, Unexpected Fano resonance in deformed porphyrin. Physica B: Condens. Matter 606, 412800 (2021)

    Article  Google Scholar 

  5. M.H. Chang, Y.H. Chang, N.-Y. Kim, H. Kim, S.-H. Lee, M.-S. Choi, Y.-H. Kim, S.-J. Kahng, Tuning and sensing spin interactions in Co-porphyrin/Au with NH3 and NO2 binding. Phys. Rev. B 100(24), 245406 (2019)

    Article  ADS  Google Scholar 

  6. X. Xiao, B. Xu, N.J. Tao, Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol. Nano Lett. 4(2), 267–271 (2004)

    Article  ADS  Google Scholar 

  7. J. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H. Yuan, H. Shimotani, Y. Iwasa, Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9(2), 125–128 (2010)

    Article  ADS  Google Scholar 

  8. S. Guo, J.M. Artés, I. Díez-Pérez, Electrochemically-gated single-molecule electrical devices. Electrochim. Acta 110, 741–753 (2013)

    Article  Google Scholar 

  9. B. Xu, X. Xiao, X. Yang, L. Zang, N. Tao, Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127(8), 2386–2387 (2005)

    Article  Google Scholar 

  10. Y.-H. Wang, F. Yan, D.-F. Li, Y.-F. Xi, R. Cao, J.-F. Zheng, Y. Shao, S. Jin, J.-Z. Chen, X.-S. Zhou, Enhanced gating performance of single-molecule conductance by heterocyclic molecules. J. Phys. Chem. Lett. 12(2), 758–763 (2021)

    Article  Google Scholar 

  11. Z.Y. Mijbil, Single-molecule thermoelectric properties susceptibility to environment molecules. Mol. Simul. 47(13), 1059–1065 (2021)

    Article  Google Scholar 

  12. W. Chen, H. Li, J.R. Widawsky, C. Appayee, L. Venkataraman, R. Breslow, Aromaticity decreases single-molecule junction conductance. J. Am. Chem. Soc. 136(3), 918–920 (2014)

    Article  Google Scholar 

  13. Z.Y. Mijbil, Electronegativity, symmetry, and bond strength intrinsically control charge transport through five-membered single-molecule junction. Eur. Phys. J. B 92(10), 220 (2019)

    Article  ADS  Google Scholar 

  14. M. Gantenbein, X. Li, S. Sangtarash, J. Bai, G. Olsen, A. Alqorashi, W. Hong, C.J. Lambert, M.R. Bryce, Exploring antiaromaticity in single-molecule junctions formed from biphenylene derivatives. Nanoscale 11(43), 20659–20666 (2019)

    Article  Google Scholar 

  15. J. Bai, X. Li, Z. Zhu, Y. Zheng, W. Hong, Single-molecule electrochemical transistors. Adv. Mater. 33(50), 2005883 (2021)

    Article  Google Scholar 

  16. A.W. Ghosh, T. Rakshit, S. Datta, Gating of a molecular transistor: electrostatic and conformational. Nano Lett. 4(4), 565–568 (2004)

    Article  ADS  Google Scholar 

  17. Frisch M., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., and Petersson G., Gaussian 09, Revision A. 02; Gaussian, Inc: Wallingford, CT, 2009. There is no corresponding record for this reference, 2015.

  18. J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54(23), 16533–16539 (1996)

    Article  ADS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  20. F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005)

    Article  Google Scholar 

  21. S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 49(D1), D1388–D1395 (2020)

    Article  Google Scholar 

  22. G.M. Loudon, Organic Chemistry (Oxford University Press, Oxford, 2001)

    Google Scholar 

  23. A. Almeshal, A.A. Al-Jobory, Z.Y. Mijbil, Precise control of single-phenanthrene junction’s conductance. J. Comput. Electron. (2022). https://doi.org/10.1007/s10825-021-01844-y

    Article  Google Scholar 

  24. Al-Jobory A.A. and Mijbil Z.Y., Mach-Zehnder quantum interference rules in hydrocarbons with substituents. Submitted.

  25. M. Chen, L. Yan, Y. Zhao, I. Murtaza, H. Meng, W. Huang, Anthracene-based semiconductors for organic field-effect transistors. J. Mater. Chem. C 6(28), 7416–7444 (2018)

    Article  Google Scholar 

  26. D.A. Rodham, S. Suzuki, R.D. Suenram, F.J. Lovas, S. Dasgupta, W.A. Goddard, G.A. Blake, Hydrogen bonding in the benzene–ammonia dimer. Nature 362(6422), 735–737 (1993)

    Article  ADS  Google Scholar 

  27. O. Leenaerts, B. Partoens, F. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77(12), 125416 (2008)

    Article  ADS  Google Scholar 

  28. H.E. Romero, P. Joshi, A.K. Gupta, H.R. Gutierrez, M.W. Cole, S.A. Tadigadapa, P.C. Eklund, Adsorption of ammonia on graphene. Nanotechnology 20(24), 245501 (2009)

    Article  ADS  Google Scholar 

  29. S. Chen, W. Cai, D. Chen, Y. Ren, X. Li, Y. Zhu, J. Kang, R.S. Ruoff, Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. New J. Phys. 12(12), 125011 (2010)

    Article  ADS  Google Scholar 

  30. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuat. B Chem. 178, 485–493 (2013)

    Article  Google Scholar 

  31. N. Vakula, G. Kuramshina, S. Makhmutova, Y.A. Pentin, DFT theoretical studies of anions of aniline and its several derivatives. Struct. Chem. 22(2), 345–356 (2011)

    Article  Google Scholar 

  32. F. Joucken, Y. Tison, J. Lagoute, J. Dumont, D. Cabosart, B. Zheng, V. Repain, C. Chacon, Y. Girard, A.R. Botello-Méndez, Localized state and charge transfer in nitrogen-doped graphene. Phys. Rev. B 85(16), 161408 (2012)

    Article  ADS  Google Scholar 

  33. B. Zheng, P. Hermet, L. Henrard, Scanning tunneling microscopy simulations of nitrogen-and boron-doped graphene and single-walled carbon nanotubes. ACS Nano 4(7), 4165–4173 (2010)

    Article  Google Scholar 

  34. S. Saha, R.K. Roy, P.W. Ayers, Are the Hirshfeld and Mulliken population analysis schemes consistent with chemical intuition? Int. J. Quantum Chem. 109(9), 1790–1806 (2009)

    Article  ADS  Google Scholar 

  35. F. Martin, H. Zipse, Charge distribution in the water molecule—a comparison of methods. J. Comput. Chem. 26(1), 97–105 (2005)

    Article  Google Scholar 

  36. T. Kar, A.B. Sannigrahi, Effect of basis set on Mulliken and Löwdin atomic charges, bond orders and valencies of some polar molecules. J. Mol. Struct. (Thoechem) 165(1), 47–54 (1988)

    Article  Google Scholar 

  37. H. Lu, D. Dai, P. Yang, L. Li, Atomic orbitals in molecules: general electronegativity and improvement of Mulliken population analysis. Phys. Chem. Chem. Phys. 8(3), 340–346 (2006)

    Article  Google Scholar 

  38. K.B. Wiberg, P.R. Rablen, Comparison of atomic charges derived via different procedures. J. Comput. Chem. 14(12), 1504–1518 (1993)

    Article  Google Scholar 

  39. R. Carbó-Dorca, P. Bultinck, Quantum mechanical basis for Mulliken population analysis. J. Math. Chem. 36(3), 231–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. J.S. Gomez-Jeria, An empirical way to correct some drawbacks of mulliken population analysis. J. Chil. Chem. Soc. 54(4), 482–485 (2009)

    Article  Google Scholar 

  41. D.Q. Andrews, R. Cohen, R.P.V. Duyne, M.A. Ratner, Single molecule electron transport junctions: charging and geometric effects on conductance. J. Chem. Phys. 125(17), 174718 (2006)

    Article  ADS  Google Scholar 

  42. X. Yin, Y. Zang, L. Zhu, J.Z. Low, Z.-F. Liu, J. Cui, J.B. Neaton, L. Venkataraman, L.M. Campos, A reversible single-molecule switch based on activated antiaromaticity. Sci. Adv. 3(10), eaao615 (2017)

    Article  Google Scholar 

  43. R.P. Kaur, D. Engles, Transport in a fullerene terminated aromatic molecular device. J. Sci.: Adv. Mater. Dev. 3(2), 206–212 (2018)

    Google Scholar 

  44. A.Z. Thong, M.S.P. Shaffer, A.P. Horsfield, HOMO–LUMO coupling: the fourth rule for highly effective molecular rectifiers. Nanoscale 9(24), 8119–8125 (2017)

    Article  Google Scholar 

  45. S. Bilan, L.A. Zotti, F. Pauly, J.C. Cuevas, Theoretical study of the charge transport through C 60-based single-molecule junctions. Phys. Rev. B 85(20), 205403 (2012)

    Article  ADS  Google Scholar 

  46. C. Brooke, A. Vezzoli, S.J. Higgins, L.A. Zotti, J. Palacios, R.J. Nichols, Resonant transport and electrostatic effects in single-molecule electrical junctions. Phys. Rev. B 91(19), 195438 (2015)

    Article  ADS  Google Scholar 

  47. B. Chen, K. Xu, Single molecule-based electronic devices: a review. NANO 14(11), 1930007 (2019)

    Article  Google Scholar 

  48. C. Wu, X. Qiao, C.M. Robertson, S.J. Higgins, C. Cai, R.J. Nichols, A. Vezzoli, A chemically soldered polyoxometalate single-molecule transistor. Angew. Chem. 132(29), 12127–12132 (2020)

    Article  ADS  Google Scholar 

  49. N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu, Y. Li, M.A. Ratner, A. Nitzan, J.F. Stoddart, X. Guo, Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1(3), 211–230 (2019)

    Article  Google Scholar 

  50. R. Kroon, D. Kiefer, D. Stegerer, L. Yu, M. Sommer, C. Müller, Polar side chains enhance processability, electrical conductivity, and thermal stability of a molecularly p-doped polythiophene. Adv. Mater. 29(24), 1700930 (2017)

    Article  Google Scholar 

  51. L. Li, W.-Y. Lo, Z. Cai, N. Zhang, L. Yu, Proton-triggered switch based on a molecular transistor with edge-on gate. Chem. Sci. 7(5), 3137–3141 (2016)

    Article  Google Scholar 

  52. MarvinSketch was used for drawing the structures in Figure 1, MarvinSketch 6.1.6, ChemAxon (https://www.chemaxon.com).

  53. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

  54. G. Knizia, Intrinsic atomic orbitals: an unbiased bridge between quantum theory and chemical concepts. J. Chem. Theory Comput. 9(11), 4834–4843 (2013)

    Article  Google Scholar 

  55. N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open Babel: an open chemical toolbox. J. Cheminf. 3(1), 33 (2011)

    Article  Google Scholar 

Download references

Funding

The present work is self-funded.

Author information

Authors and Affiliations

Authors

Contributions

Z. Y. Mijbil is responsible for the conceptualization, methodology, theoretical calculations, and data analysis and discussion.

Corresponding author

Correspondence to Zainelabideen Yousif Mijbil.

Ethics declarations

Conflict of interest

No conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijbil, Z.Y. Molecular charge transfer: annealed, pendant, and analyte cases. Eur. Phys. J. B 95, 42 (2022). https://doi.org/10.1140/epjb/s10051-022-00305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00305-0

Navigation