Skip to main content
Log in

A theoretical study of the effects of Thomas–Fermi and Hermanson’s dielectric functions and temperature on photoionization cross-section of a donor impurity in GaAs quantum dots of circular and rectangular cross-sections

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have carried out a comparative theoretical study of the effects of Thomas–Fermi and Hermanson’s spatial dielectric functions and temperature gradients on the photoionization cross-section of a donor impurity in GaAs quantum dots of cylindrical and of rectangular cross-sections. We have assumed an infinite barrier potential that confines the donor impurity within the quantum dots. The calculation of the photoionization cross-section has been carried out for a dielectric constant and two different spatial dielectric functions. This was carried out for constant temperature, axial length, and volume of the quantum dots and then for constant axial length and volume of the quantum dots but at different temperatures. Our results show that the photoionization cross-sections of the rectangular quantum dot are much smaller than those of the cylindrical quantum dot and they also peak at much lower frequencies compared to the latter for the same physical conditions. Additionally, the photoionization cross-sections increase with increasing temperature for both geometrical shapes of the quantum dots, but, again, the donor photoionization cross-sections of the cylindrical quantum dot are much larger over the range of temperatures considered in our study. Furthermore, Hermanson’s and Thomas–Fermi dielectric functions suppress the cross-sections with the former having a more pronounced effect than the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: One can make reasonable request to the corresponding author incase of need of data in the present study. Furthermore, all the data can be readily generated using open source code, by making use of the parameters listed in the text.]

References

  1. E.H.C. Parker, Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 1985)

    Book  Google Scholar 

  2. D.K. Kerry, Gallium Arsenide Technology (H. W. Sama, Michigan, 1985)

    Google Scholar 

  3. H.M. Manasevit, J. Electrochem. Soc. 118, 647 (1971)

    Article  ADS  Google Scholar 

  4. J.R. Arthur, Surf. Sc. 500, 189 (2002)

    Article  ADS  Google Scholar 

  5. A.Y. Cho, J. Appl. Phys. 42, 2074 (1971)

    Article  ADS  Google Scholar 

  6. P. Csavinszky, A.M. Elabsy, Phys. Rev B 32, 6498 (1985)

    Article  ADS  Google Scholar 

  7. J. Lee, H.N. Spector, J. Vac. Sci. Technol. B. 2, 16 (1984)

    Article  Google Scholar 

  8. J.W. Brown, H.N. Spector, J. Appl. Phys. 59, 1179 (1986)

    Article  ADS  Google Scholar 

  9. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999)

    Google Scholar 

  10. H. Ham, H.N. Spector, J. Appl. Phys. 93, 3900 (2003)

    Article  ADS  Google Scholar 

  11. E. Feddi, M. El-Yadri, F. Dujardin, R.L. Restrepo, C.A. Duque, J. Appl. Phys. 121, 064303 (2017)

    Article  ADS  Google Scholar 

  12. A. Sali, H. Satori, Superlattice Microsyst. 69, 38 (2014)

    Article  ADS  Google Scholar 

  13. S.-W. Lee, K. Hirakawa, Y. Shimada, Appl. Phys. Lett. 75, 1428 (1999)

    Article  ADS  Google Scholar 

  14. S.-S. Li, J.-B. Xia, Phys. Rev. B 55, 15434 (1997)

    Article  ADS  Google Scholar 

  15. R. Buczko, F. Bassani, Phys. Rev. B 54, 2667 (1996)

    Article  ADS  Google Scholar 

  16. V. Bondarenko, Y. Zhao, J. Phys. Condens. Matter 15, 1377 (2003)

    Article  ADS  Google Scholar 

  17. S. Yilmaz, H. Şafak, Phys. E. Amst. 36, 40 (2007)

    Article  Google Scholar 

  18. V. Milanovic, Z. Ikonic, Phys. Rev. B 39, 7982 (1989)

    Article  ADS  Google Scholar 

  19. E. Iqraoun, A. Sali, A. Rezzouk, E. Feddi, F. Dujardin, M.E. Mora-Ramos, C.A. Duque, Philos. Mag. 97, 1445 (2017)

    Article  ADS  Google Scholar 

  20. B.F. Levine, J. Appl. Phys. 74, R1 (1993)

    Article  ADS  Google Scholar 

  21. V. Ryzhii, Semicond. Sci. Technol. 11, 759 (1996)

    Article  ADS  Google Scholar 

  22. S.-W. Lee, K. Hirakawa, Y. Shimada, Phys. E Amst. 7, 499 (2000)

    Article  Google Scholar 

  23. Delerue C, M. Lanno and G. Allan, Phys. Rev. B 68, 115411 (2003)

  24. J. Cen, K.K. Bajaj, Phys. Rev. B 48, 8061 (1993)

    Article  ADS  Google Scholar 

  25. H. Oyoko, Indian Journal of Pure and Appl. Sc 20, 38 (2000)

  26. F. Oketch, H. Oyoko, G. Amolo, J. Korean Phys. Soc. 73, 928 (2018)

    Article  ADS  Google Scholar 

  27. F. Oketch, H. Oyoko, Rev. Mex. Fis. 66(1), 35–41 (2020)

    Google Scholar 

  28. J.D. Correa, N. Porras-Montenegro, C.A. Duque, Phys. Stat. Sol. (B) 241, 2440 (2004)

    Article  ADS  Google Scholar 

  29. B. Welber, M. Cardona, C.K. Kim, S. Rodriguez, Phys. Rev. B 12, 5729 (1975)

    Article  ADS  Google Scholar 

  30. D.E. Aspnes, Phys. Rev. B 14, 5331 (1976)

    Article  ADS  Google Scholar 

  31. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  32. M.E. Mora-Ramos, S.Y. Lopez, C.A. Duque, Eur. Phys. J. B 62, 257 (2008)

    Article  ADS  Google Scholar 

  33. P. Csavinszky, H.O. Oyoko, Phys. Rev. B 43, 9262 (1991)

    Article  ADS  Google Scholar 

  34. M. Lax, in Photoconductivity, Proceedings of Conference Held at Atlantic City, ed. by R. G. Breckenridge (Wiley, New York, 1956), p. 11

  35. H. Odhiambo Oyoko, Phys. Scr. 66, 94 (2002)

    Article  ADS  Google Scholar 

  36. P. Csavinszky, H. Oyoko, J. Math. Chem. 9, 197 (1992)

    Article  Google Scholar 

  37. G.D. Gilliland, Mater. Sci. Eng. R Rep. 18(3–6), 99 (1997)

    Article  Google Scholar 

  38. H. Xian, Z. Yang, G. Dorel, E. Morgan, I. Yuriy, L. Christoph, J. Gregory, Sci. Rep. 10, 10930 (2020)

    Article  Google Scholar 

  39. M. Palliard, X. Marie, E. Vanelle et al., Appl. Phys. Lett. 76, 76 (2000)

    Article  ADS  Google Scholar 

  40. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zang, B. Yang, Nano Res. 8, 355–381 (2015)

    Article  Google Scholar 

  41. L. Feng, Z. Yaohong, D. Chao, K. Syuusuke, I. Takuya, N. Naoki, T. Taro, O. Tsuyoshi, H. Shuzi, M. Takashi, Y. Kenji, S. Qing, ACS Nano 11, 10373 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HO originated the topic of the research and equally contributed in the calculations. FO did all the numerical work and wrote the draft of the paper.

Corresponding author

Correspondence to H. Oyoko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oketch, F., Oyoko, H. A theoretical study of the effects of Thomas–Fermi and Hermanson’s dielectric functions and temperature on photoionization cross-section of a donor impurity in GaAs quantum dots of circular and rectangular cross-sections. Eur. Phys. J. B 95, 44 (2022). https://doi.org/10.1140/epjb/s10051-022-00301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00301-4

Navigation