Skip to main content
Log in

Dielectric function and impurity-limited mobility of semiconductor quantum wires: effects of dielectric mismatch and finite confining potential

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The dielectric response function of the electron system in a cylindrical semiconductor quantum wire (QWR) embedded in a dielectric material is derived within the random phase approximation in the quantum limit when only the lowest electron subband is considered. The wire is studied in both finite and infinite confining potential models. It is shown that the dielectric mismatch strongly affects the collective excitations of the electron system and the electrostatic interaction between charged particles in the wire. The electron screening is greatly enhanced in thin QWRs with low-\(\kappa \) dielectric surroundings and weakened for high-\(\kappa \) dielectric environment. Thus, the impurity-limited electron mobility can be improved in small-radius semiconductor QWRs coated with a material having a dielectric constant smaller than that of the semiconductor, as opposed to a number of previous reports. The calculations also indicate that the model of infinite potential barrier for thin QWRs underestimates the impurity electron mobility compared to the finite barrier model and can be used in the case of QWRs with large radii.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. E. Kapon, D.M. Hwang, R. Bhat, Phys. Rev. Lett. 63, 430 (1989)

    Article  ADS  Google Scholar 

  2. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  ADS  Google Scholar 

  3. J.X. Ding, J.A. Zapien, W.W. Chen, Y. Lifshitz, S.T. Lee, X.M. Meng, Appl. Phys. Lett. 85, 2361 (2004)

    Article  ADS  Google Scholar 

  4. S. Arai, T. Maruyama, IEEE, J. Sel. Top. Quantum Electron. 15, 731 (2009)

    Article  ADS  Google Scholar 

  5. C.Z. Ning, Phys. Status Solidi B 247, 774 (2010)

    Article  ADS  Google Scholar 

  6. K.F. Karlsson, H. Weman, M.A. Dupertuis, K. Leifer, A. Rudra, E. Kapon, Phys. Rev. B 70, 045302 (2004)

    Article  ADS  Google Scholar 

  7. R. Könenkamp, R.C. Word, C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004)

    Article  ADS  Google Scholar 

  8. G. Jacopin, A. de Luna Bugallo, P. Lavenus, L. Rigutti, F..H. Julien, L..F. Zagonel, M. Kociak, C. Durand, D. Salomon, X..J. Chen, J. Eymery, M. Tchernycheva, Appl. Phys. Express 5, 0141101 (2012)

    Article  Google Scholar 

  9. J.W. Kang, B.H. Kim, H. Song, Y.R. Jo, S.H. Hong, G.Y. Jung, B.J. Kim, S.J. Park, C.H. Cho, Nanoscale 10, 14812 (2018)

    Article  Google Scholar 

  10. M.J. Gilbert, R. Akis, D.K. Ferry, Appl. Phys. Lett. 81, 4284 (2002)

    Article  ADS  Google Scholar 

  11. S.F. Fischer, G. Apetrii, U. Kunze, D. Schuh, G. Abstreiter, Nat. Phys. 2, 91 (2006)

    Article  Google Scholar 

  12. J. Sone, Semicond. Sci. Technol. 7, B210 (1992)

    Article  Google Scholar 

  13. S. Kasai, H. Hasegawa, Jpn. J. Appl. Phys. 40, 2029 (2001)

    Article  ADS  Google Scholar 

  14. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Nano Lett. 2, 101 (2002)

    Article  ADS  Google Scholar 

  15. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Small 2, 85 (2006)

    Article  Google Scholar 

  16. K. Trivedi, H. Yuk, H.C. Floresca, M.J. Kim, W. Hu, Nano Lett. 11, 1412 (2011)

    Article  ADS  Google Scholar 

  17. X. Duan, Y. Huang, C.M. Lieber, Nano Lett. 2, 487 (2002)

    Article  ADS  Google Scholar 

  18. R. Böckle, M. Sistani, P. Staudinger, M.S. Seifner, S. Barth, A. Lugstein, Nanotechnology 31, 445204 (2020)

    Article  ADS  Google Scholar 

  19. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)

    Article  ADS  Google Scholar 

  20. F. Patolsky, C.M. Lieber, Mater. Today 8, 20 (2005)

    Article  Google Scholar 

  21. M. Tonezzera, N.V. Hieu, Sens. Actuators B 163, 146 (2012)

    Article  Google Scholar 

  22. C.J. Först, C.R. Ashman, K. Schwarz, P.E. Blöchl, Nature 427, 53 (2004)

    Article  ADS  Google Scholar 

  23. Z.Y. Deng, S.W. Gu, J. Phys, J. Phys. Condens. Matter 5, 2261 (1993)

    Article  ADS  Google Scholar 

  24. M.M. Aghasyan, A.A. Kirakosyan, Phys. E 8, 281 (2000)

    Article  Google Scholar 

  25. H.D. Karki, S. Elagoz, R. Amca, P. Baser, K. Atasever, Phys. E 42, 1351 (2010)

    Article  Google Scholar 

  26. L. Bányai, I. Galbraith, C. Ell, H. Haug, Phys. Rev. B 36, 6099 (1987)

    Article  ADS  Google Scholar 

  27. G. Goldoni, F. Rossi, E. Molinari, Phys. Rev. Lett. 80, 4995 (1998)

    Article  ADS  Google Scholar 

  28. G. Goldoni, F. Rossi, A. Orlandi, M. Rontani, F. Manghi, E. Molinari, Phys. E 6, 482 (2000)

    Article  Google Scholar 

  29. E.A. Muljarov, E.A. Zhukov, V.S. Dneprovskii, Y. Masumoto, Phys. Rev. B 62, 7420 (2000)

    Article  ADS  Google Scholar 

  30. A.F. Slachmuylders, B. Partoens, W. Magnus, F.M. Peeters, Phys. Rev. B 74, 235321 (2006)

    Article  ADS  Google Scholar 

  31. A.F. Slachmuylders, B. Partoens, W. Magnus, F.M. Peeters, Phys. Status Solidi C 5, 2416 (2008)

    Article  ADS  Google Scholar 

  32. M. Royo, J.I. Climente, J.L. Movilla, J. Planelles, J. Phys, Condens. Matter 23, 015301 (2011)

    Article  ADS  Google Scholar 

  33. G. Parascandolo, G. Cantele, D. Ninno, G. Iadonisi, Phys. Rev. B 68, 245318 (2003)

    Article  ADS  Google Scholar 

  34. D. Jena, A. Konar, Phys. Rev. Lett. 98, 136805 (2007)

    Article  ADS  Google Scholar 

  35. A. Konar, A. Jena, J. Appl. Phys. 102, 123705 (2007)

    Article  ADS  Google Scholar 

  36. A. Konar, T. Fang, D. Jena, Phys. Rev. B 84, 085422 (2011)

    Article  ADS  Google Scholar 

  37. P.C.M. Machado, F.A.P. Osório, A.N. Borges, Mod. Phys. Lett. B 11, 441 (1997)

    Article  ADS  Google Scholar 

  38. A.A. Sousa, T.A.S. Pereira, A. Chaves, J.A. de Sousa, G.A. Farias, Appl. Phys. Lett. 100, 211601 (2012)

    Article  ADS  Google Scholar 

  39. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington, 1972)

    MATH  Google Scholar 

  40. H. Ehrenreich, M.H. Cohen, Phys. Rev. 115, 786 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  41. Q.P. Li, S. Das Sarma, R. Joynt, Phys. Rev. B 45, 13713 (1992)

    Article  ADS  Google Scholar 

  42. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  43. T. Vazifehshenas, Phys. Status Solidi A 205, 1302 (2008)

    Article  ADS  Google Scholar 

  44. A.R. Goñi, A. Pinczuk, J.S. Weiner, J.M. Calleja, B.S. Dennis, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 67, 3298 (1991)

    Article  ADS  Google Scholar 

  45. W. Götze, F. Wölfle, Phys. Rev. B 6, 1226 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the paper and have read and approved the final manuscript.

Corresponding author

Correspondence to Nguyen Nhu Dat.

Ethics declarations

Conflict of interest

The authors declared that there are no conflicts of interest associated with this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dat, N.N., Hien, N.T.T. Dielectric function and impurity-limited mobility of semiconductor quantum wires: effects of dielectric mismatch and finite confining potential. Eur. Phys. J. B 95, 31 (2022). https://doi.org/10.1140/epjb/s10051-022-00295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00295-z

Navigation