Skip to main content
Log in

Analyzing group index of impurity doped quantum dots under the superintendence of Gaussian white noise

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Present enquiry explores the group index (GI) of quantum dot (QD) doped with impurity under the aegis of applied Gaussian white noise. In this context various important physical parameters are varied over a range and corresponding variations of GI profiles are meticulously scrutinized. The study reveals that the presence/absence of noise, mode of application of noise (additive/multiplicative) and the particular physical parameter concerned, together, design the GI profiles in diverse ways. The role of noise is manifested principally by the nature of the GI peak shift (blue/red) and by the change in the signs of GI peaks (+ve/−ve) in different regimes of the physical quantity (low value/high value). The study describes the subtle interplay between the physical quantities and noise and indicates a good number of prolific ways for efficiently decreasing the speed of light. Such slowing down of the speed of light bears unquestionable importance in the field of nanoelectronics and optoelectronics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: This is a theoretical study and no experimental data has been listed.]

References

  1. L. Stevanović, N. Filipović, V. Pavlović, Opt. Mater. 91, 62 (2019)

    Article  ADS  Google Scholar 

  2. M. Kırak, S. Yılmaz, M. Şahin, M. Gençaslan, J. Appl. Phys. 109, 094309 (2011)

    Article  ADS  Google Scholar 

  3. I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2018)

    Article  ADS  Google Scholar 

  4. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys. Condensed Matter 19, 395024 (2017)

    Article  Google Scholar 

  5. V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, Superlattices Microstruct. 44, 86 (2008)

    Article  ADS  Google Scholar 

  6. B. Li, K.-X. Guo, Z.-L. Liu, Y.-B. Zheng, Phys. Lett. A 372, 1337 (2008)

    Article  ADS  Google Scholar 

  7. L. Bouzaiene, H. Alamri, L. Sfaxi, H. Maaref, J. Alloys Compd. 655, 172 (2016)

    Article  Google Scholar 

  8. O. Akankan, I. Erdogan, H. Akbas, Phys. E 35, 217 (2006)

    Article  Google Scholar 

  9. E. Kasapoglu, C.A. Duque, M.E. Mora-Ramos, R.L. Restrepo, F. Ungan, U. Yesilgul, H. Sari, I. Sökmen, Mater. Chem. Phys. 154, 170 (2015)

    Article  Google Scholar 

  10. E.C. Niculescu, Chem. Phys. 487, 16 (2017)

    Article  Google Scholar 

  11. A. Hakimyfard, M.G. Barseghyan, A.A. Kirakosyan, Phys. E 41, 1596 (2009)

    Article  Google Scholar 

  12. G. Liu, K.-X. Guo, H. Hassanabadi, L. Lu, Phys. B 407, 3676 (2012)

    Article  ADS  Google Scholar 

  13. E.C. Niculescu, C. Stan, G. Tiriba, C. Truşcă, Euro. Phys. J. B 90, 100 (2017)

    Article  ADS  Google Scholar 

  14. F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, Appl. Surf. Sci. 256, 3832 (2010)

    Article  ADS  Google Scholar 

  15. J.M. Leonora, A.J. Peter, Solid State Commun. 150, 30 (2010)

    Article  ADS  Google Scholar 

  16. C.M. Duque, M.G. Barseghyan, C.A. Duque, Euro. Phys. J. B 73, 309–319 (2010)

    Article  ADS  Google Scholar 

  17. H. El Ghazi, A. Jorio, I. Zorkani, Superlattices Microstruct. 71, 211 (2014)

    Article  ADS  Google Scholar 

  18. H.D. Karki, S. Elagöz, P. Başer, Superlattices Microstruct. 48, 298 (2010)

    Article  ADS  Google Scholar 

  19. L. Lu, W. Xie, Z. Shu, Phys. B 406, 3735 (2011)

    Article  ADS  Google Scholar 

  20. B. Gülveren, Ü. Atav, M. Şahin, M. Tomak, Phys. E 30, 143 (2005)

    Article  Google Scholar 

  21. Y. Yakar, B. Çakir, A. Özmen, Superlattices Microstruct. 60, 389 (2013)

    Article  ADS  Google Scholar 

  22. R. Khordad, H. Bahramiyan, Phys. E 66, 107 (2015)

    Article  Google Scholar 

  23. M. Pacheco, Z. Barticevic, A. Latgé, Phys. B 302, 77 (2001)

    Article  ADS  Google Scholar 

  24. G. Rezaei, M.R.K. Vahdani, B. Vaseghi, Curr. Appl. Phys. 11, 176 (2011)

    Article  ADS  Google Scholar 

  25. B. Çakir, Y. Yakar, A. Özmen, M.Ö. Sezer, M. Şahin, Superlattices Microstruct. 47, 556 (2010)

    Article  ADS  Google Scholar 

  26. Y. Yakar, B. Çakir, A. Özmen, Commun. Theor. Phys. 53, 1185 (2010)

    Article  ADS  Google Scholar 

  27. G. Rezaei, B. Vaseghi, F. Taghizadeh, M.R.K. Vahdani, M.J. Karimi, Superlattices Microstruct. 48, 450 (2010)

    Article  ADS  Google Scholar 

  28. S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Rev. B 74, 153306 (2006)

    Article  ADS  Google Scholar 

  29. S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Status Solidi C 4, 292 (2007)

    Article  ADS  Google Scholar 

  30. I. Karabulut, Ü. Atav, H. Şafak, M. Tomak, Euro. Phys. J. B 55, 283 (2007)

    Article  ADS  Google Scholar 

  31. S. Şakiroğlu, F. Ungan, U. Yesilgul, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sökmen, Phys. Lett. A 376, 1875 (2012)

    Article  ADS  Google Scholar 

  32. L. Lu, W. Xie, H. Hassanabadi, J. Appl. Phys. 109, 063108 (2011)

    Article  ADS  Google Scholar 

  33. M. Kirak, Y. Altinok, The electric field effects on the third-harmonic generation in spherical quantum dots with parabolic confinement. Euro. Phys. J. B 85, 344 (2012)

    Article  ADS  Google Scholar 

  34. K.M. Kumar, A.J. Peter, C.W. Lee, Optical absorption and refractive index change of a confined exciton in a spherical quantum dot nanostructure. Euro. Phys. J. B 84, 431–438 (2011)

    Article  ADS  Google Scholar 

  35. H. Su, S.L. Chuang, Opt. Lett. 31, 271 (2006)

    Article  ADS  Google Scholar 

  36. J. Kim, S.L. Chuang, P.C. Ku, C.J. Chang-Hasnain, J. Phys. Condens. Matters 16, S3727 (2004)

    Article  ADS  Google Scholar 

  37. C.J. Chang-Hasnain, S.L. Chuang, J. Lightwave Technol. 24, 4642 (2006)

    Article  ADS  Google Scholar 

  38. R.W. Boyd, D.J. Gauthier, Science 326, 1074 (2009)

    Article  ADS  Google Scholar 

  39. G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R.W. Boyd, Science 312, 895 (2006)

    Article  ADS  Google Scholar 

  40. R.W. Boyd, P. Narum, J. Mod. Opt. 54, 2403 (2007)

    Article  ADS  Google Scholar 

  41. S. Rajashabala, K. Navaneethakrishnan, Superlattices Microstruct. 43, 247 (2008)

    Article  ADS  Google Scholar 

  42. S. Rajashabala, K. Navaneethakrishnan, Mod. Phys. Lett. B 20, 1529 (2006)

    Article  ADS  Google Scholar 

  43. A.J. Peter, K. Navaneethakrishnan, Phys. E 40, 2747 (2008)

    Article  Google Scholar 

  44. R. Khordad, Phys. E 42, 1503 (2010)

    Article  Google Scholar 

  45. R. Khordad, Phys. B 406, 3911 (2011)

    Article  ADS  Google Scholar 

  46. X.-H. Qi, X.-J. Kang, J.-J. Liu, Phys. Rev. B 58, 10578 (1998)

    Article  ADS  Google Scholar 

  47. A.J. Peter, Int. J. Mod. Phys. B 26, 5109 (2009)

    Article  ADS  Google Scholar 

  48. Y.-X. Li, J.-J. Liu, X.-J. Kang, J. Appl. Phys. 88, 2588 (2000)

    Article  ADS  Google Scholar 

  49. Y. Naimi, J. Vahedi, M.R. Soltani, Opt. Quant. Electron. 47, 2947 (2015)

    Article  Google Scholar 

  50. M. Köksal, E. Kilicarslan, H. Sari, I. Sökmen, Phys. B 404, 3850 (2009)

    Article  ADS  Google Scholar 

  51. Z.-Y. Deng, J.-K. Guo, T.-R. Lai, Phys. Rev. B 50, 5736 (1994)

    Article  ADS  Google Scholar 

  52. W. Xie, Superlattices Microstruct. 53, 49 (2013)

    Article  ADS  Google Scholar 

  53. W. Xie, Phys. B 407, 4588 (2012)

    Article  ADS  Google Scholar 

  54. Gh. Safarpour, M.A. Izadi, M. Novzari, E. Niknam, M. Moradi, Phys. E 59, 124 (2014)

    Article  Google Scholar 

  55. Gh. Safarpour, M.A. Izadi, M. Novzari, S. Yazdanpanahi, Superlattices Microstruct. 75, 936 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors S. M. A., A. B., D. R. and M. G. thank DST-FIST (Govt. of India) and UGC-SAP (Govt. of India) for support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding author

Correspondence to Manas Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, S.M., Bera, A., Roy, D. et al. Analyzing group index of impurity doped quantum dots under the superintendence of Gaussian white noise. Eur. Phys. J. B 95, 21 (2022). https://doi.org/10.1140/epjb/s10051-022-00293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00293-1

Navigation