Skip to main content
Log in

The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Cooperation and defection behaviors are often profit-oriented in the real world, and when individuals make decisions, they tend to refer to past historical decision-making information. Therefore, while investigating individuals’ evolutionary game behaviors, it is necessary to consider the influence of individuals’ past payoffs and decision-making knowledge on current decision behaviors in an integrated manner. Besides, interdependent networks receive more attention as an emerging network structure to characterize the correlation between various complex systems. This paper combines our newly presented choice-decision mechanism based on memory and historical payoff and the stag hunt model to emulate individual evolutionary actions on interdependent lattice networks. The individual expected minimum payoff and connection probability between network layers can positively affect the cooperation rate. A memory length-related interval is discovered where all participants are cooperators, and participants associated with neighboring layers tend to be cooperators in the equilibrium phase, regardless of their initial state.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’comment: The data that support the results of this study are available from the corresponding authors upon request.]

References

  1. D.D.P. Johnson, P. Stopka, S. Knights, Sociology: the puzzle of human cooperation. Nature 421, 911–912 (2003)

    ADS  Google Scholar 

  2. E. Pennisi, How did cooperative behavior evolve. Science 309, 93 (2005)

    Google Scholar 

  3. L.A. Dugatkin, Cooperation Among Animals: An Evolutionary Perspective (Oxford University Press, Oxford, 1997)

    Google Scholar 

  4. P.E. Turner, L. Chao, Prisoner’s dilemma in an RNA virus. Nature 398, 441–443 (1999)

    ADS  Google Scholar 

  5. D.G. Rand, M.A. Nowak, Human cooperation. Trends Cognit. Sci. 17, 413–425 (2013)

    Google Scholar 

  6. M. Perc, Phase transitions in models of human cooperation. Phys. Lett. A 380, 2803–2808 (2016)

    ADS  Google Scholar 

  7. M. Perc, J.J. Jordan, D.G. Rand et al., Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  8. V. Capraro, M. Perc, Grand challenges in social physics: in pursuit of moral behavior. Front. Phys. Lausanne 6, 107 (2018)

    Google Scholar 

  9. M.A. Nowak, R.M. May, Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    ADS  Google Scholar 

  10. C. Hauert, M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428, 643–646 (2004)

    ADS  Google Scholar 

  11. L.X. Zhong, D.F. Zheng, B. Zheng et al., Evolutionary snowdrift game with an additional strategy in fully connected networks and regular lattices. Phys. A 383, 631–642 (2007)

    Google Scholar 

  12. W. Zhang, C. Xu, P.M. Hui, Spatial structure enhanced cooperation in dissatisfied adaptive snowdrift game. Eur. Phys. J. B 86, 1–6 (2013)

    ADS  MathSciNet  Google Scholar 

  13. F. Shu, X.W. Liu, M. Li, Impacts of memory on a regular lattice for different population sizes with asynchronous update in spatial snowdrift game. Phys. Lett. A 382, 1317–1323 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  14. W.X. Ye, S.H. Fan, Evolutionary snowdrift game with rational selection based on radical evaluation. Appl. Math. Comput. 294, 310–317 (2017)

    MathSciNet  MATH  Google Scholar 

  15. D.M. Shi, H.X. Yang, M.B. Hu et al., Preferential selection promotes cooperation in a spatial public goods game. Phys. A 388, 4646–4650 (2009)

    Google Scholar 

  16. X.B. Cao, W.B. Du, Z.H. Rong, The evolutionary public goods game on scale-free networks with heterogeneous investment. Phys. A 389, 1273–1280 (2010)

    Google Scholar 

  17. A. Szolnoki, M. Perc, Impact of critical mass on the evolution of cooperation in spatial public goods games. Phys. Rev. E 81, 057101 (2010)

    ADS  Google Scholar 

  18. C.Y. Xia, J.J. Zhang, Y.L. Wang et al., Evolution of cooperation in public goods games. Commun. Theor. Phys. 56, 638–644 (2011)

    ADS  MATH  Google Scholar 

  19. Y.S. Chen, H.X. Yang, W.Z. Guo et al., Promotion of cooperation based on swarm intelligence in spatial public goods games. Appl. Math. Comput. 320, 614–620 (2018)

    MathSciNet  MATH  Google Scholar 

  20. S.J. Lv, J.Y. Li, J. Mi et al., The roles of heterogeneous investment mechanism in the public goods game on scale-free networks. Phys. Lett. A 384, 126343 (2020)

    MathSciNet  MATH  Google Scholar 

  21. B. Skyrms, The Stag Hunt and the Evolution of Social Structure (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  22. M. Starnini, A. Sanchez, J. Poncela et al., Coordination and growth: the Stag Hunt game on evolutionary networks. J. Stat. Mech. 05, P05008 (2011)

    Google Scholar 

  23. L. Wang, C.Y. Xia, L. Wang et al., An evolving Stag-Hunt game with elimination and reproduction on regular lattices. Chaos Solitons Fractals 56, 69–76 (2013)

    ADS  MATH  Google Scholar 

  24. W. Zhang, Y.S. Li, C. Xu et al., Cooperative behavior and phase transitions in co-evolving stag hunt game. Phys. A 443, 161–169 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Y.K. Dong, H.D. Xu, S.H. Fan, Memory-based stag hunt game on regular lattices. Phys. A 519, 247–255 (2019)

    MathSciNet  Google Scholar 

  26. S.V. Buldyrev, R. Parshani, G. Paul et al., Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)

    ADS  Google Scholar 

  27. J. Gomez-Gardenes, I. Reinares, A. Arenas et al., Evolution of cooperation in multiplex networks. Sci. Rep. 2, 1–6 (2012)

    Google Scholar 

  28. M.D. Santos, S.N. Dorogovtsev, J.F.F. Mendes, Biased imitation in coupled evolutionary games in interdependent networks. Sci. Rep. 4, 1–6 (2014)

    Google Scholar 

  29. Z. Wang, L. Wang, A. Szolnoki et al., Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88, 1–15 (2015)

    ADS  Google Scholar 

  30. C. Luo, X.L. Zhang, H. Liu et al., cooperation in memory-based prisoner’s dilemma game on interdependent networks. Phys. A 450, 560–569 (2016)

    MATH  Google Scholar 

  31. C. Luo, X. Zhang, Y.J. Zheng, Chaotic evolution of prisoner’s dilemma game with volunteering on interdependent networks. Commun. Nonlinear Sci. Numer. Simul. 47, 407–415 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  32. C.W. Liu, J. Wang, X.P. Li et al., Diversity of interaction intensity enhances the cooperation of spatial multi-games on interdependent lattices. Phys. Lett. A 384, 126928 (2020)

    MathSciNet  Google Scholar 

  33. Y.S. Deng, J.H. Zhang, Memory-based prisoner’s dilemma game with history optimal strategy learning promotes cooperation on interdependent networks. Appl. Math. Comput. 390, 125675 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Z. Wang, A. Szolnoki, M. Perc, Evolution of public cooperation on interdependent networks: the impact of biased utility functions. EPL 97, 48001 (2012)

    ADS  Google Scholar 

  35. Z. Wang, A. Szolnoki, M. Perc, Optimal interdependence between networks for the evolution of cooperation. Sci. Rep. 3, 1–7 (2013)

    Google Scholar 

  36. Z. Wang, A. Szolnoki, M. Perc, Rewarding evolutionary fitness with links between populations promotes cooperation. J. Theor. Biol. 349, 50–56 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Z. Wang, A. Szolnoki, M. Perc, Self-organization towards optimally interdependent networks by means of coevolution. New J. Phys. 16, 033041 (2014)

    ADS  Google Scholar 

  38. M. Gao, R.H. Huang, The Influence of group emotion on risk environmental group events: based on RDEU evolutionary game model. J. Univ. Electron. Sci. Technol. China (Soc. Sci. Edit) 23, 1–9 (2021)

    Google Scholar 

  39. G.F. Yu, D.F. Li, D.C. Liang et al., An intuitionistic fuzzy multi-objective goal programming approach to portfolio selection. Int. J. Inf. Technol. Decis. Mak. 20, 1477–1497 (2021)

    Google Scholar 

  40. R. Zhang, L. Guo, Controllability of Nash equilibrium in game-based control systems. IEEE Trans. Autom. Control 64, 4180–4187 (2019)

    MathSciNet  MATH  Google Scholar 

  41. R. Zhang, F. Wang, L. Guo, On game-based control systems and beyond. Natl. Sci. Rev. 7, 1116–1117 (2020)

    Google Scholar 

  42. K. Bui, J. Jung, Cooperative game-theoretic approach to traffic flow optimization for multiple intersections. Comput. Electr. Eng. 71, 1012–1024 (2018)

    Google Scholar 

  43. K.A. Kabir, K. Kuga, J. Tanimoto, The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network-a theoretical approach. Chaos Solitons Fractals 132, 109548 (2020)

    MathSciNet  MATH  Google Scholar 

  44. M. Papadakis, N. Spernovasilis, Vaccines in the coronavirus disease 2019 (COVID-19) era: game theory applications. Infect Control Hosp. Epidemiol. (2021). https://doi.org/10.1017/ice.2021.125

    Article  Google Scholar 

  45. H. Brandt, C. Hauert, K. Sigmund, Punishment and reputation in spatial public goods games. Proc. R. Soc. Lond. B 270, 1099–1104 (2003)

    Google Scholar 

  46. A. Szolnoki, M. Perc, Reward and cooperation in the spatial public goods game. EPL 92, 38003 (2010)

    ADS  Google Scholar 

  47. F. Fu, C. Hauert, M.A. Nowak et al., Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 78, 026117 (2008)

    ADS  Google Scholar 

  48. C.J. Wang, L. Wang, J. Wang et al., Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices. Appl. Math. Comput. 293, 18–29 (2017)

    MathSciNet  MATH  Google Scholar 

  49. X.F. Wang, X.J. Chen, J. Gao et al., Reputation-based mutual selection rule promotes cooperation in spatial threshold public goods games. Chaos Solitons Fractals 56, 181–187 (2013)

    ADS  MATH  Google Scholar 

  50. X. Wei, P. Xu, S. Du et al., Reputational preference-based payoff punishment promotes cooperation in spatial social dilemmas. Eur. Phys. J. B 94, 1–7 (2021)

    ADS  Google Scholar 

  51. X.J. Chen, L. Wang, Promotion of cooperation induced by appropriate payoff aspirations in a small-world networked game. Phys. Rev. E 77, 017103 (2008)

    ADS  Google Scholar 

  52. H.X. Yang, Z.X. Wu, B.H. Wang, Role of aspiration-induced migration in cooperation. Phys. Rev. E 81, 065101 (2010)

    ADS  Google Scholar 

  53. Q.L. Wang, D.Y. Jia, Expectation driven by update willingness promotes cooperation in the spatial prisoner’s dilemma game. Appl. Math. Comput. 352, 174–179 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Z.X. Wu, X.J. Xu, Z.G. Huang et al., Evolutionary prisoner’s dilemma game with dynamic preferential selection. Phys. Rev. E 74, 021107 (2006)

    ADS  MathSciNet  Google Scholar 

  55. H.X. Yang, W.X. Wang, Z.X. Wu et al., Diversity-optimized cooperation on complex networks. Phys. Rev. E 79, 056107 (2009)

    ADS  Google Scholar 

  56. Z. Wang, Z. Wang, Y.H. Yang et al., Age-related preferential selection can promote cooperation in the prisoner’s dilemma game. Int. J. Mod. Phys. C 23, 1250013 (2012)

    ADS  MATH  Google Scholar 

  57. Y. Liu, C. Huang, Q. Dai, Preferential selection based on strategy persistence and memory promotes cooperation in evolutionary prisoner’s dilemma games. Phys. A 499, 481–489 (2018)

    Google Scholar 

  58. B. Wang, W. Kang, J. Sheng et al., Preferential selection based on payoff satisfaction and memory promotes cooperation in the spatial prisoner’s dilemma games. EPL 129, 38002 (2020)

    ADS  Google Scholar 

  59. W. Ye, W. Feng, C. Lu et al., Memory-based prisoner’s dilemma game with conditional selection on networks. Appl. Math. Comput. 307, 31–37 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Y. Liu, Z. Li, X. Chen et al., Memory-based prisoner’s dilemma on square lattices. Phys. A 389, 2390–2396 (2010)

    Google Scholar 

  61. X.W. Wang, S. Nie, L.L. Jiang et al., cooperation in spatial evolutionary games with historical payoffs. Phys. Lett. A 380, 2819–2822 (2016)

    ADS  MathSciNet  Google Scholar 

  62. Z. Danku, M. Perc, A. Szolnoki, Knowing the past improves cooperation in the future. Sci. Rep. 9, 1–9 (2019)

    ADS  Google Scholar 

  63. A. Szolnoki, M. Perc, G. Szabó et al., Impact of aging on the evolution of cooperation in the spatial prisoner’s dilemma game. Phys. Rev. E 80, 021901 (2009)

    ADS  Google Scholar 

  64. A. Szolnoki, X. Chen, Strategy dependent learning activity in cyclic dominant systems. Chaos Solitons Fractals 138, 109935 (2020)

    MathSciNet  Google Scholar 

  65. N. Biderman, A. Bakkour, D. Shohamy, What are memories for? The hippocampus bridges past experience with future decisions. Trends Cognit. Sci. 24, 542–556 (2020)

    Google Scholar 

  66. W.X. Wang, J. Ren, G. Chen et al., Memory-based snowdrift game on networks. Phys. Rev. E 74, 056113 (2006)

    ADS  Google Scholar 

  67. Z.J. Xu, R.Y. Li, L.Z. Zhang, The role of memory in human strategy updating in optional public goods game. Chaos 29, 043128 (2019)

    ADS  MathSciNet  Google Scholar 

  68. F. Shu, Y.J. Liu, X.W. Liu et al., Memory-based conformity enhances cooperation in social dilemmas. Appl. Math. Comput. 346, 480–490 (2019)

    MathSciNet  MATH  Google Scholar 

  69. A. Szolnoki, M. Perc, Promoting cooperation in social dilemmas via simple coevolutionary rules. Eur. Phys. J. B 67, 337–344 (2009)

    ADS  MATH  Google Scholar 

  70. A. Szolnoki, M. Perc, Emergence of multilevel selection in the prisoner’s dilemma game on coevolving random networks. New J. Phys. 11, 093033 (2009)

    ADS  Google Scholar 

  71. A. Szolnoki, M. Perc, Information sharing promotes prosocial behaviour. New J. Phys. 15, 053010 (2013)

    ADS  MathSciNet  Google Scholar 

  72. Z. Wang, A. Szolnoki, M. Perc, Interdependent network reciprocity in evolutionary games. Sci. Rep. 3, 1–7 (2013)

    Google Scholar 

Download references

Acknowledgements

This project is financially supported by the Natural Science Foundation of China (NSFC) (Grant nos. 61673228, 62072260).

Author information

Authors and Affiliations

Authors

Contributions

YD: conceptualization, software, investigation, formal analysis, data curation, and writing—original draft. JZ: validation, resources, writing—review and editing, and supervision.

Corresponding author

Correspondence to Jihui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Zhang, J. The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks. Eur. Phys. J. B 95, 29 (2022). https://doi.org/10.1140/epjb/s10051-022-00292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00292-2

Navigation