Skip to main content

Advertisement

Log in

Lattice stability of nickel titanate under high pressure up to 30.3 GPa

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Studying the lattice stability of ilmenite-type compounds under extreme conditions such as high temperature and high pressure is of great significance both for understanding the intrinsic mechanism of structural transformations between various forms of ABO3 compounds and for guiding the design of functional materials. Herein, lattice transformations of ilmenite-type compounds represented by nickel titanate (NiTiO3) have been studied by using in-situ high-pressure Raman spectroscopy up to 30.3 GPa for the first time. No phase transitions have been observed in the studied pressure range. However, our data clearly show a structural distortion in the local cationic octahedron-NiO6 of NiTiO3 starting at 15 GPa, which has resulted from the pressure-induced Jahn–Teller effect. Our data also indicate the ilmenite structure NiTiO3 to become more symmetrical under high pressure, and we did not find any amorphization up to 30.3 GPa. This research provides basic information on the ilmenite NiTiO3 structure that it is more stable than other analog ilmenite structures previously studied by other researchers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: Data shown in this work are available upon request to the corresponding author.].

Abbreviations

NTO:

Nickel titanate

RTRP:

Room temperature room pressure

XRD:

X-ray diffraction

PTM:

Pressure transmitting medium

DAC:

Diamond anvil cell

References

  1. J.E. Rodrigues, M.M. Ferrer, T.R. Cunha, R.C. Costa, J.R. Sambrano, A.D. Rodrigues, P.S. Pizani, J. Phys. Condens. Matter 30, 485401–485414 (2011)

    Article  Google Scholar 

  2. R. Tursun, Y.C. Su, Q.S. Yu, J. Tan, T. Hu, Z.B. Luo, J. Zhang, J. Alloy Compd. 773, 288–298 (2019)

    Article  Google Scholar 

  3. M. Lakshmi, S.R. Aashish, K. Syed, F. Muhammad, K.C. Sajjan, M. Revanasiddappa, AIP Adv. 3, 112113–112124 (2013)

    Article  ADS  Google Scholar 

  4. G.Y. Zhao, Y. Zhang, L. Jiang, H.M. Zhang, Ceram. Int. 43, 3314–3318 (2017)

    Article  Google Scholar 

  5. V.I. Torgashev, V.I. Yuzyuk, V.B. Shirokov, V.V. Lemanov, I.E. Spektor, Phys. Solid State 47, 337–346 (2004)

    Article  ADS  Google Scholar 

  6. M. Akaogi, K. Abe, H. Yusa, H. Kojitani, D. Mori, Phys. Chem. Miner. 42, 421–429 (2015)

    Article  ADS  Google Scholar 

  7. Y. Qu, W. Zhou, Z.Y. Ren, S.C. Du, X.Y. Meng, G.H. Tian, K. Pan, G.F. Wang, H.G. Fu, J. Mater. Chem. 22, 16471–16477 (2012)

    Article  Google Scholar 

  8. R. Tursun, J. Tan, Q.S. Yu, Y.C. Su, L.H. Xiao, Sol. Energy 159, 697–703 (2018)

    Article  ADS  Google Scholar 

  9. X.Y. Chen, G.X. Lai, G. Di, W.L. Zhu, T.S. Lai, Y.J. Zhao, Int. J. Mod. Phys. B 32, 1850105–1850117 (2018)

    Article  ADS  Google Scholar 

  10. D. Christofilos, J. Arvanitidis, E. Kampasakali, K. Papagelis, S. Ves, G.A. Kourouklis, Phys. Status Solidi (B) 241, 3155–3160 (2004)

    Article  ADS  Google Scholar 

  11. H.P. Scott, Z. Liu, R.J. Hemley, Q. Williams, Am. Miner. 92, 1814–1820 (2007)

    Article  ADS  Google Scholar 

  12. M. Lerch, H. Boyse, R. Neder, F. Frey, W. Laqua, J. Phys. Chem. Solids 53, 1153–1156 (1992)

    Article  ADS  Google Scholar 

  13. T. Fujii, D. Nakatsuka, M. Nakanishi, J. Takada, T. Yoshino, Hyperfine Interact. 226, 275–280 (2014)

    Article  ADS  Google Scholar 

  14. Y. Kim, I.H. Choi, J. Alloy Compd. 770, 959–963 (2019)

    Article  Google Scholar 

  15. Y.L. Yan, F.F. Li, Y.B. Gong, M.G. Yao, X.L. Huang, X.P. Fu, B. Han, Q. Zhou, T. Cui, J. Phys. Chem. C 120, 24992–24998 (2016)

    Article  Google Scholar 

  16. Y. Fujioka, J. Frantti, A. Puretzky, G. King, Inorg. Chem. 55, 9436–9444 (2016)

    Article  Google Scholar 

  17. P.M.A. Ruiz, A. Kassiba, A.A. Morales, J.M. Makowska, RSC Adv. 5, 171–178 (2015)

    Google Scholar 

  18. K.Y. Xue, X. Chen, J. Zhang, Z.Q. Mao, L.Y. Tang, IOP Conf. Ser. Mater. Sci. Eng. 612, 022083 (2019)

    Article  Google Scholar 

  19. N.I. Milko, V.A. Miroslav, J. Raman Spectrosc. 32, 805–811 (2001)

    Article  Google Scholar 

  20. X. Chao, W. Yi, S. Yu, W. Yang, W.X. Jie, Z. Kun, L.Z. Guo, L.B. Sheng, L.X. Yang, J. Alloy Compd. 05, 189 (2014)

    Google Scholar 

  21. Y. Hitoshi, A. Masaki, S. Nagayoshi, K. Hiroshi, Y. Ryo, O. Yasuo, Phys. Chem. Miner. 33, 217–226 (2006)

    Article  Google Scholar 

  22. X.C. Liu, F. Gao, P. Deng, C.S. Tian, J. Inorg. Mater. 23, 881–886 (2008). ((In Chinese))

    Article  Google Scholar 

  23. T. Okada, T. Narita, T. Nagai, T. Yamanaka, Am. Miner. 93, 39–47 (2008)

    Article  ADS  Google Scholar 

  24. E. Ito, Y. Matsui, Phys. Earth Planet. Int. 9, 344–352 (1974)

    Article  ADS  Google Scholar 

  25. K.K. Mishra, T.R. Ravindran, O.I. Joshua, F. Eduardo, R.A. Jose, S. Carlos, J.F. Isabel, S.J. Herre, V.D. Zant, P. Amit, R. Kanawade, C.G. Andres, J.L. Dattatray, ACS Appl. Nano Mater. 3, 8794–8802 (2020)

    Article  Google Scholar 

  26. E. Ito, Y. Matsui, Phys. Chem. Miner. 4, 256–264 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by the Xinjiang Key Laboratory of Solid Physics and Devices. We thank the National Funding of China.

Funding

This work is supported by National Funding of China, (Grant number 100400006); (Grant number 620312019); (Grant number 041312022).

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is written by all authors. All authors have given approval to the final version of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Anwar Hushur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Hushur, A. Lattice stability of nickel titanate under high pressure up to 30.3 GPa. Eur. Phys. J. B 95, 30 (2022). https://doi.org/10.1140/epjb/s10051-022-00291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00291-3

Navigation