Skip to main content
Log in

First-principles study on the effects of selected alloying elements on the generalized stacking fault energies of nickel

  • Reply to Comment - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using first-principles calculations, the effects of selected alloying elements (e.g., Cr, Ti, Mn, Co, V, and Fe) on the generalized stacking fault energies, ductility, and twinning in pure nickel (Ni) are investigated. The impact of alloying on alteration in the deformation mode and mechanical properties of pure Ni was elucidated. The results show that Mn, Co, V, and Fe prefer to occupy the Ni sites in (111) planes. However, Cr and Ti are preferentially located inside the Ni grains. Evaluation of the Rice criterion for ductility revealed that the addition of Fe increases the ductility of Ni. Meanwhile, introducing Cr leads to a greater tendency of twinning-induced deformation in Ni. Rest of the alloying elements have a negligible effect on deformation. Furthermore, introducing alloying elements enhances the corrosion resistance of Ni in the following order: Co < Fe < Mn < V < Ti < Cr. The calculation results could provide theoretical guidance on the effect of alloying elements on the physical and chemical properties of Ni.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability Statement

The manuscript has associated data in a data repository [Authors’ Comment: The authors confirm that all datas and models included in this study are available within the article.]

References

  1. T.M. Pollock, A.S. Argon, Acta Metall. Et Materialia 42, 1859 (1994)

    Article  Google Scholar 

  2. Z.W. Shan, E.A. Stach, W. Jmk et al., Science 305, 5684 (2004)

    Article  Google Scholar 

  3. J. Lohmiller, M. Grewer, C. Braun et al., Acta Mater. 65, 295 (2014)

    Article  ADS  Google Scholar 

  4. T. Jossant, M. J. Stowell, J. P. Hirth, et al., Acta Metall. 13(3), 279–291 (1965)

    Article  Google Scholar 

  5. S.H. Van, P.M. Derlet, A.G. Frøseth, Nat. Mater. 3, 399 (2004)

    Article  ADS  Google Scholar 

  6. V. Vítek, Phil. Mag. 18, 154 (1968)

    Article  Google Scholar 

  7. V. Vitek, Cryst. Lattice Defects 5, 1 (1974)

    Google Scholar 

  8. N. Bernstein, E.B. Tadmor, Phys. Rev. B 69, 9 (2004)

    Article  Google Scholar 

  9. S. Hai, E.B. Tadmor, Acta Mater. 51, 1 (2003)

    Article  Google Scholar 

  10. C. Wang, S. Schnecker, W. Li et al., Acta Mater. 2, 117094 (2021)

    Article  Google Scholar 

  11. X.X. Yu, C.Y. Wang, Acta Mater. 57, 19 (2009)

    Google Scholar 

  12. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 37, 17 (1988)

    Article  Google Scholar 

  13. R.M. Kearsey, P. Au, J. C. Beddoes, et al., Superalloys, (2010)

  14. C.A. Schuh, T.G. Nieh, H. Iwasaki, Acta Mater. 51, 2 (2003)

    Google Scholar 

  15. A. Heckl, M. Göken, R.F. Singer, Metall. Mater. Trans. A 43, 1 (2012)

    Article  Google Scholar 

  16. D.J. Siegel, Appl. Phys. Lett. 87, 121901 (2005)

    Article  ADS  Google Scholar 

  17. C.X. Li, S.H. Dang, L.P. Wang et al., Chin. Phys. B 23, 11 (2014)

    Google Scholar 

  18. S.H. Dang, C.X. Li, P.D. Han, Eur. Phys. J. B 93, 156 (2020)

    Article  ADS  Google Scholar 

  19. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B. 136(3B), B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Kohlhaas, P. Dunner, P.Z. Schmitz, Z. Angew. Phys. 23, 245 (1967)

    Google Scholar 

  21. M. Acet, H. Zahres, E.F. Wassermann, W. Pepperhoff, Phys. Rev. B 49, 6012 (1994)

    Article  ADS  Google Scholar 

  22. X. Nie, R. Wang, Y. Ye, Y. Zhou, D. Wang, Solid State Commun. 96, 729 (1995)

    Article  ADS  Google Scholar 

  23. X.Z. Wu, R. Wang, S.F. Wang et al., Appl. Surf. Sci. 256, 6345 (2010)

    Article  ADS  Google Scholar 

  24. S. Foiles, M. Baskes, M. Daw, Phys. Rev. B 33, 7983 (1986)

    Article  ADS  Google Scholar 

  25. J.R. Rice, J. Mech. Phys. Solids 40, 239 (1992)

    Article  ADS  Google Scholar 

  26. E. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52, 2507 (2004)

    Article  ADS  Google Scholar 

  27. N. Bernstein, E. Tadmor, Phys. Rev. B 69, 094116 (2004)

    Article  ADS  Google Scholar 

  28. A. Frøseth, P. Derlet, H. van Swygenhoven, Acta Mater. 52, 5863 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Cooperative Projects between Undergraduate Universities in Chongqing and Institutes affiliated with Chinese Academy of Sciences (No. HZ2021014), the Science and Technology Research Program of Chongqing Education Commission of China (KJZDM202001401), and University Innovation Research Group of Shale Gas Optical Fiber Intelligent Sensing Technology (CXQT20027).

Author information

Authors and Affiliations

Authors

Contributions

CL gave structural design, calculation stimulating and results analysis. SD gave model building and stimulating discussions.

Corresponding author

Correspondence to Suihu Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Dang, S. First-principles study on the effects of selected alloying elements on the generalized stacking fault energies of nickel. Eur. Phys. J. B 95, 36 (2022). https://doi.org/10.1140/epjb/s10051-022-00289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00289-x

Navigation