Skip to main content
Log in

Chaos recognition using a single nonlinear node delay-based reservoir computer

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Chaotic dynamics are abundantly present in nature as well as in manufactured devices. While chaos in some systems is an undesired phenomenon, in others, they are advantageous because of several applications. Therefore, there is an interest in developing accurate and robust tools for detecting chaos in systems. When the equations describing the system are known, the largest Lyapunov exponent method is used to classify regular from chaotic dynamics. However, when analyzing a process, it often happens that the exact form of the underlying equations is not known. Therefore, it is important to have tools allowing chaos detection using only the time series generated by the theoretical or experimental systems. In this paper, we propose an approach using the single nonlinear node delay-based reservoir computer to separate regular from chaotic dynamics. We show that its classification capabilities are robust with an accuracy of up to 99.03%. We also study the effect of the length of the time series N on the performance of our approach and demonstrate that high accuracy is achieved with short time series (\(N \ge 20\)). Moreover, we demonstrate that the reservoir computer trained with the standard map can classify the dynamical state of another system (for instance, the Lorenz system).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: If someone needs the data, the person can kindly contact the corresponding author.]

References

  1. F.T. Werner, B.K. Rhea, R.C. Harrison, R.N. Dean, Chaos Solitons Fractal 104, 461 (2017)

    ADS  Google Scholar 

  2. M. Samimi, M.H. Majidi, S. Khorashadizadeh, AEU Int. J. Electron. Commun. 127, 153424 (2020)

    Google Scholar 

  3. A. Wang, L. Wang, P. Li, Y. Wang, Opt. Express 25(4), 3153 (2017)

    ADS  Google Scholar 

  4. B. Shi, C. Luo, J.G.F. Flores, G. Lo, D.L. Kwong, J. Wu, C.W. Wong, Opt. Express 28(24), 36685 (2020)

    ADS  Google Scholar 

  5. J.H.T. Mbé, W.N. Atchoffo, R. Tchitnga, P. Woafo, IEEE J. Quantum Electron. 57(5), 1 (2021)

    Google Scholar 

  6. G.A. Al-Suhail, F.R. Tahir, M.H. Abd, V.T. Pham, L. Fortuna, Commun. Nonlinear Sci. Numer. Simul. 57, 80 (2018)

    ADS  MathSciNet  Google Scholar 

  7. C.S. Pappu, T.L. Carroll, B.C. Flores, IEEE Access 8, 48361 (2020)

    Google Scholar 

  8. Y. Bolotin, A. Tur, V. Yanovsky, Chaos: Concepts, Control and Constructive Use (Springer, Berlin, 2017)

    MATH  Google Scholar 

  9. W.S. Lee, S. Flach, Mach. Learn. Sci. Technol. 1(4), 045019 (2020)

    Google Scholar 

  10. N. Boullé, V. Dallas, Y. Nakatsukasa, D. Samaddar, Phys. D Nonlinear Phenom. 403, 132261 (2020)

    Google Scholar 

  11. P. Antonik, N. Marsal, D. Brunner, D. Rontani, Nat. Mach. Intell. 1(11), 530 (2019)

    Google Scholar 

  12. L. Larger, A. Baylón-Fuentes, R. Martinenghi, V.S. Udaltsov, Y.K. Chembo, M. Jacquot, Phys. Rev. X 7, 011015 (2017). https://doi.org/10.1103/PhysRevX.7.011015

    Article  Google Scholar 

  13. L. Appeltant et al., These Dr (Vrije Univ, Brussel, 2012)

    Google Scholar 

  14. L. Larger, M.C. Soriano, D. Brunner, L. Appeltant, J.M. Gutiérrez, L. Pesquera, C.R. Mirasso, I. Fischer, Opt. Express 20(3), 3241 (2012)

    ADS  Google Scholar 

  15. M.A. Escalona-Morán, M.C. Soriano, I. Fischer, C.R. Mirasso, IEEE J. Biomed. Health Inform. 19(3), 892 (2014)

    Google Scholar 

  16. M.C. Soriano, Physics 10, 12 (2017)

    Google Scholar 

  17. A. Katumba, M. Freiberger, F. Laporte, A. Lugnan, S. Sackesyn, C. Ma, J. Dambre, P. Bienstman, IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018). https://doi.org/10.1109/JSTQE.2018.2821843

    Article  Google Scholar 

  18. T. Pyragiene, K. Pyragas, Phys. Lett. A 383(25), 3088 (2019)

    ADS  Google Scholar 

  19. Y.K. Chembo, Chaos Interdiscip. J. Nonlinear Sci. 30(1), 013111 (2020)

    MathSciNet  Google Scholar 

  20. H. Dai, Y.K. Chembo, IEEE J. Quantum Electron. 57(3), 1 (2021)

    Google Scholar 

  21. X. Guo, S. Xiang, Y. Zhang, L. Lin, A. Wen, Y. Hao, IEEE J. Sel. Top. Quantum Electron. 26(5), 1500707 (2020)

  22. J. Hasler, H.B. Marr, Front. Neurosci. 7, 118 (2013)

    Google Scholar 

  23. P. Antonik, A. Smerieri, F. Duport, M. Haelterman, S. Massar, in 24th Belgian-Dutch conference on machine learning (2015)

  24. M. Dillane, J. Robertson, M. Peters, A. Hurtado, B. Kelleher, Eur. Phys. J. B 92(9), 1 (2019)

    Google Scholar 

  25. L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, Nat. Commun. 2(1), 1 (2011)

    Google Scholar 

  26. I. Estébanez, I. Fischer, M.C. Soriano, Phys. Rev. Appl. 12(3), 034058 (2019)

  27. J. Li, K. Bai, L. Liu, Y. Yi, in 2018 19th International symposium on quality electronic design (ISQED) (IEEE, 2018), pp. 308–313

  28. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  29. A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, vol. 38 (Springer, Berlin, 2013)

    MATH  Google Scholar 

  30. M. Harsoula, K. Karamanos, G. Contopoulos, Phys. Rev. E 99(3), 032203 (2019)

    ADS  MathSciNet  Google Scholar 

  31. A. Namajūnas, K. Pyragas, A. Tamaševičius, Phys. Lett. A 201(1), 42 (1995)

    ADS  Google Scholar 

  32. M.C. Soriano, G. Van der Sande, I. Fischer, C.R. Mirasso, Phys. Rev. Lett. 108(13), 134101 (2012)

    ADS  Google Scholar 

  33. L. Keuninckx, J. Danckaert, G. Van der Sande, Cogn. Comput. 9(3), 315 (2017)

    Google Scholar 

  34. Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, H. Wu, Nat. Commun. 12(1), 1 (2021)

    ADS  Google Scholar 

  35. M.C. Mackey, L. Glass, Science 197(4300), 287 (1977)

    ADS  Google Scholar 

  36. G. Tanaka, T. Yamane, J.B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, A. Hirose, Neural Netw. 115, 100 (2019)

    Google Scholar 

  37. M. Goldmann, F. Köster, K. Lüdge, S. Yanchuk, Chaos Interdiscip. J. Nonlinear Sci. 30(9), 093124 (2020)

    Google Scholar 

  38. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, Sci. Rep. 2(1), 1 (2012)

    Google Scholar 

  39. F.A. Araujo, M. Riou, J. Torrejon, S. Tsunegi, D. Querlioz, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M.D. Stiles et al., Sci. Rep. 10(1), 1 (2020)

    Google Scholar 

  40. D.M.W. Powers, J. Mach. Learn. Technol. 2(1), 37 (2011)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript and have approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liedji, D.W., Talla Mbé, J.H. & Kenné, G. Chaos recognition using a single nonlinear node delay-based reservoir computer. Eur. Phys. J. B 95, 18 (2022). https://doi.org/10.1140/epjb/s10051-022-00280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00280-6

Navigation