Skip to main content
Log in

Chiral magnetic effect in Weyl semimetals and negative refraction

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The role of the chiral magnetic effect (CME) in Weyl semimetals is considered within the framework of classical electrodynamics. The dispersion relation of electromagnetic waves is studied using their helical polarization. It has been shown that the refractive index in this class of materials becomes negative in the frequency range below the plasma frequency. The CME (a signature of chiral anomaly/ axial anomaly) which is due to the application of parallel electric and magnetic fields in Weyl semimetals thus opens up a new way of realizing negative refractive index (NRI). The relevance of the present work to negative refraction through chiral route where cross polarization (magnetization) induced by magnetic fields (electric fields) occurs in chiral materials is discussed. This novel phenomenon of negative refraction in Weyl semimetals might help in exploiting this class of materials in potential applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, data sharing is not applicable.

References

  1. V.G. Veselago, Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities. Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. J.B. Pendry et al., Magnetism from conductors and enhanced non-linear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  3. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  4. V.M. Shalaev, Optical negative-index metamaterials. Nature Photonics. 1, 509 (2007)

    Article  Google Scholar 

  5. S. Tretyakov et al., Waves and energy in chiral nihility. J. Electromagn. Waves Appl. 17, 695 (2003)

    Article  Google Scholar 

  6. J.B. Pendry, A chiral route to negative refraction. Science 306, 1353 (2004)

    Article  ADS  Google Scholar 

  7. C. Monzon, D.W. Forester, Negative refraction and focusing of circularly polarized waves in optically active media. Phys. Rev. Lett. 95, 123904 (2005)

    Article  ADS  Google Scholar 

  8. S. Zhang et al., Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009)

    Article  ADS  Google Scholar 

  9. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  10. N. P. Armitage, E. J. Mele, Ashvin Viswanath, “Weyl and Dirac semimetals in three-dimensional solids”, Rev. Mod. Phys. 90, 015001 (2018)

  11. H.B. Nielsen, M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl Fermions in a crystal. Phys. Lett. B 130, 389 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Di. Xiao, Yugui Yao, Zhong Fang, Qian Niu, Berry phase effect in anomalous thermoelectric transport. Phys. Rev. Lett. 97, 026603 (2006)

    Article  ADS  Google Scholar 

  13. P. Hosur, X.L. Qi, Recent developments in transport phenomena in Weyl semimetals. Comptes Rendus Physique 14, 857 (2013)

    Article  ADS  Google Scholar 

  14. A.A. Burkov, Chiral anomaly and transport in Weyl metals. Journal of Physics: Condensed Matter 27, 113201 (2015)

    ADS  Google Scholar 

  15. S. Adler, Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969)

    Article  ADS  Google Scholar 

  16. J.S. Bell, R. Jackiw, A PCAC puzzle: \(\pi ^0\rightarrow \gamma \gamma \) in the - model. Nuovo Cimento A 60, 47 (1969)

    Article  ADS  Google Scholar 

  17. D.T. Son, B.Z. Spivak, Chiral anomaly and classical negative magnetoresistence of Weyl metals. Phys. Rev. B 88, 104412 (2013)

    Article  ADS  Google Scholar 

  18. Xiaochun Huang et al., Observation of the chiral anomaly induced negative magnetoreistence in 3D Weyl semimetal \(TaAs\). Phys. Rev. X 5, 031023 (2015)

    Google Scholar 

  19. C. Zhang et al., Signature of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal. Nature Commun. 7, 10735 (2015)

    Article  ADS  Google Scholar 

  20. Qiang Li et al., Chiral magnetic effect in \(ZrTe_5\). Nature Phys. 12, 550 (2016)

    Article  ADS  Google Scholar 

  21. A.A. Zyuzin, S. Wu, A.A. Burkov, Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012)

    Article  ADS  Google Scholar 

  22. A.A. Zyuzin, A.A. Burkov, Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012)

    Article  ADS  Google Scholar 

  23. P. Goswami, S. Tewari, Axionic field theory of (3+1) dimensional Weyl semimetals. Phys. Rev. B 88, 245107 (2013)

    Article  ADS  Google Scholar 

  24. M.A. Stephanov, Y. Yin, Chiral kinetic theory. Phys. Rev. Lett. 109, 162001 (2012)

    Article  ADS  Google Scholar 

  25. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  26. M.M. Vazifeh, M. Franz, Electromagnetic response of Weyl semimetals. Phys. Rev. Lett. 111, 027201 (2013)

    Article  ADS  Google Scholar 

  27. Y. Chen, Si Wu, A. A. Burkov, “Axion response in Weyl semimetals”, Phys. Rev. B 88, 125105 (2013)

  28. See the text by J. D. Jackson, Classical Electrodynamics, John Wiley and Sons. Inc., New York, (1962)

  29. Due to the axion action mentioned in the introduction, the Gauss’s law and the Ampere’s law can respectively be written as, \(\vec{\nabla }.\vec{E}=4\pi (\rho +\frac{\alpha }{2\pi ^2}\vec{Q}.\vec{B}) \) and \(\vec{\nabla }\times \vec{B}=\frac{4\pi }{c} [\vec{J} +\frac{\alpha }{2\pi ^2}Q_0\vec{B}+\frac{\alpha }{2\pi ^2} (\vec{Q}\times \vec{E})]+\frac{1}{c}\frac{\partial \vec{E}}{\partial t}\). Since we are interested here in CME, the terms containing \(\vec{Q}\) have been neglected and the term related to \(Q_0\) has been absorbed in \({{ }_{ch}}\) as, \(\frac{\alpha }{2\pi ^2}Q_0 = {{ }_{ch}}\)

  30. From the continuity equation (equation (5) in the text), \((\rho _{+}-\rho _{-})\) can be calculated as, \((\rho _{+}-\rho _{-})=\frac{2e^3}{4\pi ^2} E B \tau _{ch}\) for B parallel to E, where \(\tau _{ch}\) is the chirality changing scattering time. Thus, \({{ }_{ch}}\) becomes, \({{ }_{ch}}=\frac{e^2}{4\pi ^2}\frac{2e^3}{4\pi ^2}\frac{1}{e g_B} E B\tau _{ch}\). The CME conductivity \({{ }_{CME}}\) which is experimentally measured, is related to the chiral conductivity \({{ }_{ch}}\) as, \({{ }_{ch}}= {{ }_{CME}}\frac{E}{B}\)

  31. Debanand Sa, Chiral magnetic effect and Maxwell-Chern-Simons electrodynamics in Weyl semimetals. Eur. Phys. J. B 94, 31 (2021)

    Article  ADS  Google Scholar 

  32. M. Shoufie Ukhtary, Ahmad R. T. Nugraha, Riichiro Saito, “Nagative refraction in Weyl semimetals”, J. Phys. Soc. Jpn. 86, 104703 (2017)

  33. T. Morimoto, N. Nagaosa, Chiral anomaly and giant magnetochiral anisotropy in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 146603 (2016)

    Article  ADS  Google Scholar 

  34. S. Nandy, D.A. Pesin, Chiral magnetic effect of hot electrons. Phys. Rev. Lett. 125, 266601 (2020)

    Article  ADS  Google Scholar 

  35. S. Nandy, G. Sharma, A. Taraphder, S. Tewari, Chiral anomaly as the origin of the planar Hall effect in Weyl semimetals. Phys. Rev. Lett. 119, 176804 (2017)

    Article  ADS  Google Scholar 

  36. R. D. Peccei, The strong CP problem and axions, Axions- Lecture notes in Physics, 741, 3-17 (2008), (eds.) M. Kuster, G. Raffelt and B. Beltran, Springer, Berlin, Heidelberg

  37. F. Wilczek, Time’s (almost) reversible arrow, Quanta Magazine, 7 January (1016)

Download references

Acknowledgements

The author would like to thank Prof. T. V. Ramakrishnan and Prof. V. S. Subrahmanyam for stimulating discussions and critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sa, D. Chiral magnetic effect in Weyl semimetals and negative refraction. Eur. Phys. J. B 95, 11 (2022). https://doi.org/10.1140/epjb/s10051-021-00274-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00274-w

Navigation