Skip to main content
Log in

Effect of charged impurity correlations on electrical conductivity in monolayer graphene double-layer systems

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We calculate the conductivity of graphene in three monolayer graphene double-layer structures taking into account the presence of correlations of charged impurities. We use the Boltzmann transport theory and continuum model for the structure factor S\((\mathbf {q})\) to study the electrical conductivity of monolayer graphene in presence of the second layer (bilayer graphene, monolayer graphene, or two-dimensional electron gas (2DEG)) due to the screened Coulomb scattering at T = 0 K for different values of correlation length \(r_{\text {\tiny 0}}\), interlayer distance d and dielectric constant \(\epsilon _{\text {\tiny 2}}, \epsilon _{\text {\tiny 3}}\), and 2DEG material parameters. We find that for considered double-layer systems, the electrical conductivity \(\sigma \) increases with decreasing d for all values of \(r_0\) and increases strongly (slightly) with increasing \(\epsilon _2(\epsilon _3)\). We also show that \(\sigma \) increases slightly (considerably) with increasing \(\epsilon _3\) for \(\epsilon _3 = \epsilon _{2DEG}(\epsilon _3 = \epsilon _2 = \epsilon _{2DEG})\) and the influence of correlations on \(\sigma \) is negligible for low impurity concentration of layer I \(n_{i1}\) (\(n_{i1} \preceq \) \( 10^{12} {\text{ cm }}^{-2}\)).

GraphicAbstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: This is a theoretical study and no experimental data has been listed.]

References

  1. S.V. Morozov et al., Phys. Rev. Lett. 100, 016602 (2008)

    Article  ADS  Google Scholar 

  2. E. MeCann, V.I. Falko, Phys. Rev. Lett. 96, 086805 (2006)

    Article  ADS  Google Scholar 

  3. S. Das Sarma, E.H. Hwang, E. Rossi, Phys. Rev. B 81, 161407 (2010)

    Article  ADS  Google Scholar 

  4. E.H. Hwang, S. Adam, S. Das Sarma, Phys. Rev. Lett. 98, 186806 (2007)

    Article  ADS  Google Scholar 

  5. E.H. Hwang, S. Das Sarma, Phys. Rev. B 75, 205418 (2007)

    Article  ADS  Google Scholar 

  6. S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, PNAS 104, 18392 (2007)

    Article  ADS  Google Scholar 

  7. J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Nat. Phys. 4, 377 (2008)

    Article  Google Scholar 

  8. E.H. Hwang, S. Das Sarma, Phys. Rev. B 77, 195412 (2008)

    Article  ADS  Google Scholar 

  9. S. Adam, S. Das Sarma, Solid State Commun. 146, 356 (2008)

    Article  ADS  Google Scholar 

  10. E. Rossi, S. Das Sarma, Phys. Rev. Lett. 101, 166803 (2008)

    Article  ADS  Google Scholar 

  11. E. Rossi, S. Adam, S. Das Sarma, Phys. Rev. B 79, 245423 (2009)

    Article  ADS  Google Scholar 

  12. E.H. Hwang, S. Das Sarma, Phys. Rev. B 79, 165404 (2009)

    Article  ADS  Google Scholar 

  13. D.K. Patel, A.C. Sharma, S.S.Z. Ashraf, Phys. Stat. Sol. (b) 252, 282 (2015)

    Article  ADS  Google Scholar 

  14. H. Mousavi, J. Khodadadi, Physica E 50, 11 (2013)

    Article  ADS  Google Scholar 

  15. E.H. Qiuzi Li, E. Hwang, Rossi Solid State Commun. 152, 1390–1399 (2012)

    Article  ADS  Google Scholar 

  16. J. You, M.S. Fuhrer, Phys. Rev. Lett. 107, 206601 (2011)

    Article  ADS  Google Scholar 

  17. T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, Phys. Rev. B 86, 035418 (2012)

    Article  ADS  Google Scholar 

  18. S. Das Sarma et al., Phys. Rev. B 91, 205304 (2015)

    Article  ADS  Google Scholar 

  19. Q. Li, E.H. Hwang, E. Rossi, D. Sarma, Phys. Rev. Lett. 107, 156601 (2011)

  20. B. Amorim, N.M.R. Peres, J. Phys.: Condens. Matter 24, 335602 (2012)

    ADS  Google Scholar 

  21. N.M.R. Peres, J.M.B. Lopes Dos Santos, A.H. Castro Neto, EPL 95, 18001 (2011)

    Article  ADS  Google Scholar 

  22. F. Parhizgar, R. Asgari, Phys. Rev. B 90, 035438 (2014)

    Article  ADS  Google Scholar 

  23. D. Van Tuan, Nguyen Quoc Khanh. Physica E 54, 267 (2013)

  24. A. Principi, M. Carrega, R. Asgari, V. Pellegrini, M. Polini, Phys. Rev. B 86, 085421 (2012)

    Article  ADS  Google Scholar 

  25. G. Gonzalez de la Cruz, Solid State Commun. 213–214, 6 (2015)

    Article  Google Scholar 

  26. M. Rodriguez-Vega, J. Fischer, S. Das Sarma, E. Rossi, Phys. Rev. B 90, 035406 (2014)

  27. N. Van Men, N.Q. Khanh, Phys. Lett. A 381, 3779 (2017)

    Article  ADS  Google Scholar 

  28. D.T.K. Phuong, N. Van Men, Solid State Commun. 314–315, 113942 (2020)

    Article  Google Scholar 

  29. A. Gamucci et al., Nat. Commun. 5, 5824 (2014)

    Article  ADS  Google Scholar 

  30. B. Scharf, A. Matos-Abiague, Phys. Rev. B 86, 115425 (2012)

    Article  ADS  Google Scholar 

  31. N.Q. Khanh, D.K. Linh, Superlatt. Microstruct. 116, 181–190 (2018)

    Article  ADS  Google Scholar 

  32. E. Junhua Zhang, Rossi. Phys. Rev. Lett. 111, 086804 (2013)

  33. J. Hu et al., Nano Energy 40, 42 (2017)

    Article  Google Scholar 

  34. A. Perali, D. Neilson, A.R. Hamilton, Phys. Rev. Lett. 110, 146803 (2013)

    Article  ADS  Google Scholar 

  35. N.Q. Khanh, D.K. Linh, Superlatt. Microstruct. 114, 406–415 (2018)

    Article  ADS  Google Scholar 

  36. N.Q. Khanh, D.K. Linh, Int. J. Mod. Phys. B 34(27), 2050254 (2020)

    Article  MathSciNet  Google Scholar 

  37. M. Lv, S. Wan, Phys. Rev. B 81, 195409 (2010)

    Article  ADS  Google Scholar 

  38. P.F. Maldague, Surf. Sci. 73, 296 (1978)

    Article  ADS  Google Scholar 

  39. V. Van Tai, N.Q. Khanh, Superlatt. Microstruct. 88, 474 (2015)

    Article  ADS  Google Scholar 

  40. V. Van Tai, N.Q. Khanh, Superlatt. Microstruct. 100, 792 (2016)

    Article  ADS  Google Scholar 

  41. A. Konar, T. Fang, D. Jena, Phys. Rev. B 82, 115452 (2010)

    Article  ADS  Google Scholar 

  42. W. Neil, N. Ashcroft, David Mermin, Solid State Physics (Thomson Learning Inc., New York, 1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Le Kieu Oanh and Dang Khanh Linh did all calculations and wrote the manuscript. Nguyen Quoc Khanh supervised the project and improved the manuscript.

Corresponding author

Correspondence to Dang Khanh Linh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2849 KB)

Appendix A: The structure of supplementary material

Appendix A: The structure of supplementary material

The supplementary material to the paper consists of the following subsections:

  1. A

    The dependence of the effective interaction \(W_{11}\)(q) between correlated impurities and electron in layer I as a function of interlayer distance d.

  2. B

    The dependence of the resistivity of layer I as a function of the impurity density \(n_{i1}\) for different values of \(n_1\).

  3. C

    The dependence of the resistivity of layer I as a function of the impurity density \(n_{i1}\) for different value of \(\epsilon _2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oanh, L.T.K., Khanh, N.Q. & Linh, D.K. Effect of charged impurity correlations on electrical conductivity in monolayer graphene double-layer systems. Eur. Phys. J. B 95, 10 (2022). https://doi.org/10.1140/epjb/s10051-021-00273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00273-x

Navigation