Skip to main content
Log in

Effect of oxygen contamination on structural and magnetic properties of MnPd bilayer grown on Fe/MgO(001): Ab initio study

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a detailed study of oxygen contamination on the structural and magnetic properties for both Fe/MgO(001) substrate and MnPd bilayer grown on Fe/MgO(001) by using a plane wave self consistent field (PWscf) method based on DFT and DFT+U approaches, where a generalized gradient correction for exchange-correlation potential is taken into account. For the clean (\(\hbox {Mn}_{0.5}\) \(\hbox {Pd}_{0.5}\))\(_{2}\) bilayer grown on Fe/MgO(001) substrate, we have found that the c(2x2)-MnPd/c(2x2)-MnPd arrangement, where the magnetic moments of the Mn (Pd) atoms belonging to the surface and subsurface of 4.61 (0.05 \(\mu _{B}\)) and -4.03 (0.21 \(\mu _{B}\)), is lowest in energy than the c(2x2)-MnPd/p(1x2)-MnPd, p(1x2)-MnPd/MnPd-c(2x2) and p(1x2)-MnPd/p(1x2)-MnPd arrangements. A ripple is obtained at the surface (subsurface) plane. The contamination by O (1-ML coverage) on top for both Fe/MgO(001) and MnPd/Fe(100) multilayers increases interlayer distances between the surface and subsurface layers, with a preferential adsorption of oxygen atoms on the fourfold hollow sites when both DFT and DFT+U approaches are used. Similar magnetic ordering is obtained for Fe/MgO(001) and O/Fe/MgO(001) as well as for (MnPd)\(_{n}\)/Fe(100) and O/(MnPd)\(_{n}\)/Fe(001) sytems, where n=1-2, taking into account both approaches. The DFT+U approach produces an enhancement of the magnetic moments but does not modify the magnetic ground states of those systems. Here, we found that one half of oxygen atoms is pushed out-of-plane while the other half penetrates the MnPd (Fe) surface, giving rise to the MnO (FeO) oxide surface, in agreement with available experimental data.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’ comment: All authors were actively involved in the preparation of the manuscript. All authors have read and approved the final manuscript.]

References

  1. H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  2. P. Blomqvist, K.M. Krishnan, H. Ohldag, Phys. Rev. Lett. 94, 107203 (2005)

    Article  ADS  Google Scholar 

  3. R. Bali, B.B. Nelsoncheeseman, A. Scholl, E. Arenholz, Y. Suzuki, M.G. Blamire, J. Appl. Phys. 106, 277–80 (2009)

    Article  Google Scholar 

  4. W. Zhang, M.E. Bowden, K.M. Krishnan, Appl. Phys. Lett. 98, 092503 (2011)

    Article  ADS  Google Scholar 

  5. M.R. Fitzsimmons, B.J. Kirby, S. Roy, Z.P. Li, I.V. Roshchin, S.K. Sinha, I.K. Schuller, Phys. Rev. B 75, 214412 (2007)

    Article  ADS  Google Scholar 

  6. S. Roy et al., Phys. Rev. Lett. 95, 047201 (2005)

    Article  ADS  Google Scholar 

  7. P. Kappenberger, S. Martin, Y. Pellmont, H.J. Hug, J.B. Kortright, O. Hellwig, E.E. Fullerton, Phys. Rev. Lett. 91, 267202 (2003)

    Article  ADS  Google Scholar 

  8. A. Brambilla, M. Portalupi, M. Finazzi, G. Ghiringhelli, L. Duò, F. Parmigiani, M. Zacchigna, M. Zangrando, F. Ciccacci, J. Magn. Magn. Mater. 272, 1221–2 (2004)

    Article  ADS  Google Scholar 

  9. W. Kim, E. Jin, J. Wu, J. Park, E. Arenholz, A. Scholl, C. Hwang, Z.Q. Qiu, Phys. Rev. B 81, 174416 (2010)

    Article  ADS  Google Scholar 

  10. Y. Ijiri, T.C. Schulthess, J.A. Borchers, P.J. van der Zaag, R.W. Erwin, Phys. Rev. Lett. 99, 147201 (2007)

    Article  ADS  Google Scholar 

  11. Y.Y. Wang, C. Song, J.Y. Zhang, F. Pan, J. Magn. Magn. Mater. 428, 431–6 (2017)

    Article  ADS  Google Scholar 

  12. J. Wu, J. Choi, A. Scholl, A. Doran, E. Arenholz, C. Hwang, Z.Q. Qiu, Phys. Rev. B 79, 212411 (2009)

    Article  ADS  Google Scholar 

  13. O. Gomonay, T. Jungwirth, Sinova. J. Phys. Status Solid. R 11, 1700022 (2017)

  14. T. Blachowicz, A. Ehrmann, Coatings 11, 122 (2021)

    Article  Google Scholar 

  15. W. Zhang, K.M. Krishnan, Mater. Sci. Eng. R 105, 1–20 (2016)

    Article  Google Scholar 

  16. W. Zhang, K.M. Krishnan, Phys. Rev. B 88, 024428 (2013)

    Article  ADS  Google Scholar 

  17. S. Brück, S. Macke, E. Goering, X. Ji, Q. Zhan, K.M. Krishnan, Phys. Rev. B 81, 134414 (2010)

    Article  ADS  Google Scholar 

  18. N. Thuy, N. Tuan, N. Phuoc, N. Nam, T. Hien, N. Hai, J. Magn. Magn. Mater. 41, 304 (2006)

    Google Scholar 

  19. B.R. Malonda-Boungou, J.H.J. Magnoungou, B. M’Passi-Mabiala, C. Demangeat, Surf. Sci. 649, 101–111 (2016)

    Article  ADS  Google Scholar 

  20. A. Tange, C.L. Gao, B.Y. Yavorsky, I.V. Maznichenko, C. Etz, A. Ernst, W. Hergert, I. Mertig, W. Wulfhekel, J. Kirschner, Phys. Rev. B 81, 195410 (2010)

    Article  ADS  Google Scholar 

  21. M. Zheng et al., Chin. Phys. B 29, 067901 (2020)

    Article  ADS  Google Scholar 

  22. S. Andrieu, E. Foy, H. Fischer, M. Alnot, M. Piecuch, Phys. Rev. B 58, 8210 (1998)

    Article  ADS  Google Scholar 

  23. A. Calloni, G. Fratesi, S. Achilli, G. Berti, G. Bussetti, A. Picone, A. Brambilla, P. Folegati, F. Ciccacci, L. Duo, Phys. Rev. B 96, 085427 (2017)

  24. F. Máca, J. Kudrnovský, V. Drchal, J. Redinger, Phys. Rev. B 88, 045423 (2013)

  25. S. Meza-Aguilar, C. Demangeat, Eur. Phys. J. B 93, 107 (2020)

    Article  ADS  Google Scholar 

  26. H. Zenia, S. Bouarab, J. Ferrer, C. Demangeat, Surf. Sci. 12–20, 564 (2004)

    Google Scholar 

  27. P. P. Gianozzi, et al., J. Phys. Condens. Matter 21, 395502 (2009). http://www.quantum-espresso.org

  28. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. CzyÌzyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  29. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  30. C. Gray, Y. Lei, G. Wang, J. Appl. Phys. 120, 215101 (2016)

    Article  ADS  Google Scholar 

  31. X. Tan, J. Zhou, Y. Peng, Appl. Surf. Sci. 258, 8484–8491 (2012)

    Article  ADS  Google Scholar 

  32. A. Floris, S. de Gironcoli, E.K.U. Gross, M. Cococcioni, Phys. Rev. B 84, 161102(R) (2011)

    Article  ADS  Google Scholar 

  33. S. Lany, Phys. Rev. B 87, 085112 (2013)

    Article  ADS  Google Scholar 

  34. R.W.G. Wyckoff, Crystal Structure, vol. 1 (Interscience Publishers (John Wiley), New York, 1965)

    Google Scholar 

  35. L. Pal, E. Kren, G. Kadar, P. Szabo, P. Szabo, T. Tarnoczi, J. Appl. Phys. 39, 538 (1968)

    Article  ADS  Google Scholar 

  36. K.O. Legg, F. Jona, D.W. Jepsen, P.M. Marcus, Phys. Rev. B 16, 5271 (1977)

  37. Y. Sakisaka, T. Miyano, M. Onchi, Phys. Rev. B 30, 6849 (1984)

    Article  ADS  Google Scholar 

  38. P. Błoński, A. Kiejna, J. Hafner, Surf. Sci. 88, 590 (2005)

    Google Scholar 

  39. S.S. Parihar, H.L. Meyerheim, K. Mohseni, S. Ostanin, A. Ernst, N. Jedrecy, R. Felici, J. Kirschner, Phys. Rev. B 81, 075428 (2010)

    Article  ADS  Google Scholar 

  40. H. Huang, J. Hermanson, Phys. Rev. B 32, 6312 (1985)

    Article  ADS  Google Scholar 

  41. R. Enrique Félix-medina, M. Andrés Leyva-Lucero, S. Meza-Aguilar, C. Demangeat. Eur. Phys. J. B. 62, 91 (2018)

  42. S. Pick, Surf. Sci. 602, 3733 (2008)

    Article  ADS  Google Scholar 

  43. S.R. Chubb, W.E. Pickett, Phys. Rev. Lett. 58, 1248 (1987)

    Article  ADS  Google Scholar 

  44. R.L. Headrick, P. Konarski, S.M. Yalisove, W.R. Graham, Phys. Rev. B 39, 5713 (1989)

    Article  ADS  Google Scholar 

  45. J.E. Pask, D.J. singh, I.I. Mazin, C.S. Hellberg, J. Kortus, Phys. Rev. B 64, 024403 (2001)

  46. J. Kanamori, J. Phys. Chem. Solids 87, 10 (1959)

    Google Scholar 

  47. J.B. Goodenough, Phys. Rev. 117, 1442 (1960)

    Article  ADS  Google Scholar 

  48. J.B. Goodenough, Magnetism and the Chemical Bond (Interscience, New York, 1963)

    Google Scholar 

  49. P.W. Anderson, Solid State Phys. 14, 99 (1963)

    Article  Google Scholar 

  50. V.I. Bukhtiyarov, M. Hävecker, V.V. Kaichev, A Knop-Gericke, R.W Mayer, R. Schlögl, Catal. Lett.74, 121 (2001)

Download references

Acknowledgements

One of the authors (J.H.J. Magnoungou) thanks the Abdus Salam International Centre for Theoretical Physics (ICTP) through the OEA-AF-12 project at CEPAMOQ. The computational infrastructure for this project was provided by the Center for High Performance Computing (CHPC) in South Africa through the MATS862 project.

Author information

Authors and Affiliations

Authors

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 121 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnoungou, J.H.J., Malonda-Boungou, B.R., Amolo, G. et al. Effect of oxygen contamination on structural and magnetic properties of MnPd bilayer grown on Fe/MgO(001): Ab initio study. Eur. Phys. J. B 95, 14 (2022). https://doi.org/10.1140/epjb/s10051-021-00271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00271-z

Navigation