Skip to main content
Log in

Machine learning S-wave scattering phase shifts bypassing the radial Schrödinger equation

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a proof of concept machine learning model resting on a convolutional neural network capable of yielding accurate scattering s-wave phase shifts caused by different three-dimensional spherically symmetric potentials at fixed collision energy thereby bypassing the radial Schrödinger equation. In our work, we discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor. The good performance, even in presence of bound states in the data sets, exhibited by our model that accordingly is trained on the Hamiltonian through each scattering potential, demonstrates the feasibility of this proof of principle.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors comment: The data are publicly released on author‘s (a) GitHub (https://github.com/aleromualdi/quantum-phase-shift-cnn).]

Notes

  1. Note that in this case, using the same model hyperparameters as in the previous cases, resulted in higher variability in validation loss during training. We regularized the model by reducing the learning rate of the Adam optimizer to \(10^{-6}\) and the training epochs to 5000.

References

  1. C.J. Joachain, Quantum Collision Theory (Wiley, North-Holland, 1975)

    Google Scholar 

  2. H. Piel, M. Chrysos, Mol. Phys. 118, e1587024 (2020)

    ADS  Google Scholar 

  3. E. Fermi, Ric. Sci. 7(2), 13–52 (1936)

    Google Scholar 

  4. K. Huang, C.N. Yang, Phys. Rev. 105, 767 (1957)

    ADS  MathSciNet  Google Scholar 

  5. Z. Idziaszek, T. Calarco, Phys. Rev. Lett. 96, 013201 (2006)

    ADS  Google Scholar 

  6. J.-C. Pain, J. Phys. Commun. 2, 025015 (2018)

    Google Scholar 

  7. W. Kohn, Phys. Rev. 74, 1763 (1948)

    ADS  Google Scholar 

  8. R.K. Nesbet, Phys. Rev. 175, 134 (1968)

    ADS  Google Scholar 

  9. F. Calogero, Il Nuovo Cim. (1955–1965) 27, 261 (1963)

    ADS  Google Scholar 

  10. F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, Cambridge, 1967)

    MATH  Google Scholar 

  11. V.V. Babikov, Sov. Phys. Uspekhi 10, 271 (1967)

    ADS  Google Scholar 

  12. U. Fano, A.R.P. Rau, Atomic Collisions and Spectra (Academic Press Inc, Orlando, 1986)

    Google Scholar 

  13. A. Palov, G. Balint-Kurti, Comput. Phys. Commun. 263, 107895 (2021). https://doi.org/10.1016/j.cpc.2021.107895

    Article  Google Scholar 

  14. L. Zdeborová, Nat. Phys. 13, 420 (2016)

    Google Scholar 

  15. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019)

    ADS  Google Scholar 

  16. J. Schmidt, M.R.G. Marques, M.A.L. Botti, Silvana Marques npj Comput. Mater. 5, 489 (2016)

    Google Scholar 

  17. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13, 5255–5264 (2017)

    Google Scholar 

  18. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Sci. Adv. 3, e1701816 (2017)

    ADS  Google Scholar 

  19. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, N. J. Phys. 15, 095003 (2013)

    Google Scholar 

  20. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012)

    ADS  Google Scholar 

  21. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys. Rev. B 89, 205118 (2014)

    ADS  Google Scholar 

  22. L. Wang, Phys. Rev. B 94, 195105 (2016)

    ADS  Google Scholar 

  23. J. Carrasquilla, R. Melko, Nat. Phys. 13, 431–434 (2017)

    Google Scholar 

  24. E. van Nieuwenburg, E. Bairey, G. Refael, Phys. Rev. B 98, 060301 (2018)

    Google Scholar 

  25. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007)

    ADS  Google Scholar 

  26. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010)

    ADS  Google Scholar 

  27. A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, J. Comput. Phys. 285, 316 (2015)

    ADS  MathSciNet  Google Scholar 

  28. A.V. Shapeev, Multiscale Model. Simul. 14, 1153 (2016)

    MathSciNet  Google Scholar 

  29. J. Behler, J. Chem. Phys. 145, 170901 (2016). https://doi.org/10.1063/1.4966192

    Article  ADS  Google Scholar 

  30. J. Hermann, Z. Schätzle, F. Noé, Nat. Chem. 12, 891 (2020)

    Google Scholar 

  31. S. Manzhos, Mach. Learn. Sci. Technol. 1, 013002 (2020)

    Google Scholar 

  32. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015)

    ADS  Google Scholar 

  33. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87, 184115 (2013)

    ADS  Google Scholar 

  34. K. Rossi, J. Cumby, Int. J. Quantum Chem. 120, e26151 (2020)

    Google Scholar 

  35. F. Musil, A. Grisafi, A.P. Bartók, C. Ortner, G. Csányi, M. Ceriotti, Chem. Rev. 121, 9759 (2021)

    Google Scholar 

  36. D.J. Gross, Proc. Natl. Acad. Sci USA 93, 14256 (1996)

    ADS  Google Scholar 

  37. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  Google Scholar 

  38. O.A. von Lilienfeld, Int. J. Quantum Chem. 113, 1676 (2013)

    Google Scholar 

  39. K. Mills, M. Spanner, I. Tamblyn, Phys. Rev. A 97, 155137 (2018)

    Google Scholar 

  40. D. Yarotsky, Constr Approx (2021). https://doi.org/10.1007/s00365-021-09546-1

  41. D. Hubel, T.N. Wiesel, J. Phys. 160, 106 (1962)

    Google Scholar 

  42. K. Fukushima, Biol. Cybern. 36, 193–202 (1980)

    Google Scholar 

  43. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Proc. IEEE 86, 2278 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  44. A. Krizhevsky, I. Sutskever, G.E. Hinton, in Advances in Neural Information Processing Systems, vol. 25, ed. by F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Curran Associates Inc, New York, 2012), pp. 1097–1105

    Google Scholar 

  45. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, IEEE Conf. Comput. Vis. Pattern Recogn. (2015). https://doi.org/10.1109/CVPR.2015.7298594

    Book  Google Scholar 

  46. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Nature 529, 489 (2016)

    ADS  Google Scholar 

  47. S. Mallat, Philos. Trans. R. Soc. A 374, 20150203 (2016)

  48. H.W. Lin, M. Tegmark, D.M. Rolnick, J. Stat. Phys. 168, 1223 (2017)

    ADS  MathSciNet  Google Scholar 

  49. N.W. Ashcroft, M.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    MATH  Google Scholar 

  50. J.R. Meyer, F.J. Bartoli, Phys. Rev. B 23, 5413 (1981)

    ADS  Google Scholar 

  51. G. Giuliani, G. Vignale, Quantum Theory of Electron Liquid (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  52. B. Pohv, K. Rith, C. Scholz, F. Zetsche, Particles and Nuclei, 1st edn. (Springer, Berlin, 2002)

    Google Scholar 

  53. N.F. Bali, S.-Y. Chu, R.W. Haymaker, C.-I. Tan, Phys. Rev. 161, 1450 (1967)

    ADS  Google Scholar 

  54. I. Nagy, B. Apagyi, Phys. Rev. A 58, R1653 (1998)

    ADS  Google Scholar 

  55. C.S. Lam, Y.P. Varshni, Phys. Rev. A 6, 1391 (1972). https://doi.org/10.1103/PhysRevA.6.1391

    Article  ADS  Google Scholar 

  56. P.K. Shukla, B. Eliasson, Phys. Lett. A 372, 2897 (2008)

    ADS  Google Scholar 

  57. P.K. Shukla, B. Eliasson, Phys. Rev. Lett. 108, 165007 (2012)

    ADS  Google Scholar 

  58. C.Y. Lin, Y.K. Ho, Eur. Phys. J. D 57, 21 (2010). https://doi.org/10.1140/epjd/e2010-00009-8

    Article  ADS  Google Scholar 

  59. Z. Moldabekov, T. Schoof, P. Ludwig, M. Bonitz, T. Ramazanov, Phys. Plasmas 22, 102104 (2015)

    ADS  Google Scholar 

  60. Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Plasmas 23, 073302 (2016)

    ADS  Google Scholar 

  61. D. Munjal, P. Silotia, V. Prasad, Phys. Plasmas 24, 122118 (2017)

    ADS  Google Scholar 

  62. K.S. Krane, Introductory Nuclear Physics (Wiley, Ne Jersey, 1988)

    Google Scholar 

  63. A.Z. Capri, Nonrelativistic Quantum Mechanics, vol. 3 (World Scientific, Singapore, 2002)

    MATH  Google Scholar 

  64. J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (Wiley, New York, 1972)

    Google Scholar 

  65. P.H.E. Meijer, J.L. Repace, Am. J. Phys. 43, 428 (1975)

    ADS  Google Scholar 

  66. P.M. Morse, W.P. Allis, Phys. Rev. 44, 269 (1933)

    ADS  Google Scholar 

  67. G. Marchetti, J. Appl. Phys. 126, 045713 (2019)

    ADS  Google Scholar 

  68. K. Chadan, R. Kobayashi, T. Kobayashi, J. Math. Phys. 42, 4031 (2001)

    ADS  MathSciNet  Google Scholar 

  69. N. Levinson, Kgl. Danske Videnskab. Selskab. Mat. Fys. Medd. 25, 356 (1949)

    Google Scholar 

  70. M. Portnoi, I. Galbraith, Solid State Commun. 103, 325 (1997)

    ADS  Google Scholar 

  71. H.A. Bethe, Phys. Rev. 76, 38 (1949). https://doi.org/10.1103/PhysRev.76.38

    Article  ADS  Google Scholar 

  72. L. Petzold, SIAM J. Sci. Stat. Comput. 4, 136 (1983)

    Google Scholar 

  73. M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems (2016). Preprint at arXiv:1603.04467

  74. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014), arXiv:1412.6980

Download references

Acknowledgements

We thank professor Ravi Rau for pointing out important works regarding the phase amplitude equation and dr. Jan Hermann and dr. Peter Šušnjar for valuable comments and suggestions. This work was supported by the EU through the European Regional Development Fund CoE program TK133 “The Dark Side of the Universe”.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romualdi, A., Marchetti, G. Machine learning S-wave scattering phase shifts bypassing the radial Schrödinger equation. Eur. Phys. J. B 94, 249 (2021). https://doi.org/10.1140/epjb/s10051-021-00261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00261-1

Navigation