Skip to main content

Advertisement

Log in

Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Diamond-like cubic silicon (d-Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit (ZT), which greatly limits its applications in thermoelectric conversion field. tP36-Si is a newly predicted allotrope of silicon with direct band gap, and its total energy is close to d-Si, which indicates that it is likely to be experimentally prepared in years to come. In this article, the thermoelectric properties of this novel new silicon allotrope are researched by combining semi-classical Boltzmann transport theory with first-principles calculation. Electron transport of this new silicon allotrope possesses obvious anisotropy, while the anisotropy of phonon thermal conductivity is slight. Compared to d-Si and other silicon allotropes (Si\(_{24}\), oP32-Si), lower lattice thermal conductivity (23.68 W/mK) and higher power factor (72.63 W/mK\(^{2})\) are revealed in tP36-Si. Further analysis shows that the lower phonon thermal conductivity principally comes from the inhibition of group velocity and relaxation time of phonon. The thermoelectric performance of tP36-Si is evaluated according to the electronic relaxation time obtained from the deformation potential (DP) theory, where the peak value of ZT along the xx lattice direction of n-type (p-type) under 700 K is close to 2.18 (0.64), which is much above that of Si24(0.69, 0.51) and d-Si(0.07). The finding illustrates the excellent thermoelectric property of tP36-Si and demonstrate that this new silicon allotrope is an appropriate and promising potential thermoelectric materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. B.C. Sales, Science 295, 1248 (2002)

    Google Scholar 

  2. A. Majumdar, Science 303, 777 (2004)

    Google Scholar 

  3. H. Böttner, G. Chen, R. Venkatasubramanian, MRS Bull. 31, 211 (2006)

    Google Scholar 

  4. Y.L. Ouyang, Z.W. Zhang, D.F. Li, J. Chen, G. Zhang, Ann. Phys. 531, 1800437 (2019)

    Google Scholar 

  5. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014)

    ADS  Google Scholar 

  6. M. Hong, Z.-G. Chen, J. Zou, Chin. Phys. B 27, 048403 (2018)

    ADS  Google Scholar 

  7. Y.-N. Li, P. Wu, S.-P. Zhang, S. Chen, D. Yan, J.-G. Yang, L. Wang, X.-L. Huai, Chin. Phys. B 27, 057201 (2018)

    ADS  Google Scholar 

  8. T. Li, J. Yu, G. Nie, B.-P. Zhang, Q. Sun, Nano Energy 67, 104283 (2020)

    Google Scholar 

  9. P.-Z. Jia, Y.-J. Zeng, D. Wu, H. Pan, X.-H. Cao, W.-X. Zhou, Z.-X. Xie, J.-X. Zhang, K.-Q. Chen, J. Phys. 32, 055302 (2019)

    Google Scholar 

  10. B.P. Jelle, C. Breivik, H.D. Røkenes, Solar Energy Mater. Solar Cells 100, 69 (2012)

    Google Scholar 

  11. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    ADS  Google Scholar 

  12. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009)

    Google Scholar 

  13. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III., J.R. Heath, Nature 451, 168 (2008)

    ADS  Google Scholar 

  14. J.C. Jamieson, Science 139, 762 (1963)

    ADS  Google Scholar 

  15. J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, G.S. Pawley, Phys. Rev. B 50, 13043 (1994)

    ADS  Google Scholar 

  16. R.H. WentorfJ, S. Kasper, Science 139, 338 (1963)

    ADS  Google Scholar 

  17. Q.Y. Fan, C.C. Chai, Q. Wei, P.K. Zhou, Y.T. Yang, Mater. Des. 132, 539 (2017)

    Google Scholar 

  18. P. Zhang, T. Ouyang, C. Tang, C. He, J. Li, C. Zhang, M. Hu, J. Zhong, Model. Simul. Mater. Sci. Eng. 26, 085006 (2018)

    ADS  Google Scholar 

  19. Q.Q. Wang, B. Xu, J. Sun, H.Y. Liu, Z.S. Zhao, D.L. Yu, C.Z. Fan, J.L. He, J. Am. Chem. Soc. 136, 9826 (2014)

    Google Scholar 

  20. Y.H. Lu, X. Zhu, M. Wang, Chem. Sel. 3, 451 (2018)

    Google Scholar 

  21. W. Zhang, C. Chai, Q. Fan, Y. Song, Y. Yang, J. Phys. Condens. Matter 32, 355701 (2020)

    Google Scholar 

  22. T. Ouyang, P. Zhang, H. Xiao, C. Tang, J. Li, C. He, J. Zhong, J. Phys. D 50, 425501 (2017)

    ADS  Google Scholar 

  23. X.H. Cai, Q. Yang, Y. Pang, M. Wang, Comput. Mater. Sci. 173, 109441 (2020)

    Google Scholar 

  24. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    ADS  Google Scholar 

  25. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  26. J. Hafner, J. Comput. Chem. 29, 2044 (2008)

    Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  28. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  29. G.K. MadsenD, J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    ADS  Google Scholar 

  30. G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng, D.J. Singh, Phys. Rev. Mater. 1, 079901 (2017)

    Google Scholar 

  31. J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950)

    ADS  Google Scholar 

  32. A. Togo, I. Tanaka, Scripta Materialia 108, 1 (2015)

    ADS  Google Scholar 

  33. W. Li, L. Lindsay, D.A. Broido, D.A. Stewart, N. Mingo, Phys. Rev. B 86, 174307 (2012)

    ADS  Google Scholar 

  34. W. Li, J. Carrete, N.A. Katcho, N. Mingo, Comput. Phys. Commun. 185, 1747 (2014)

    ADS  Google Scholar 

  35. K.D. Parrish, A. Jain, J.M. Larkin, W.A. Saidi, A.J. McGaughey, Phys. Rev. B 90, 235201 (2014)

    ADS  Google Scholar 

  36. W. Li, N. Mingo, L. Lindsay, D.A. Broido, D.A. Stewart, N.A. Katcho, Phys. Rev. B 85, 195436 (2012)

    ADS  Google Scholar 

  37. B. Peng, H. Zhang, H. Shao, H. Lu, D.W. Zhang, H. Zhu, Nano Energy 30, 225 (2016)

    Google Scholar 

  38. P. Zhang, T. Ouyang, C. Tang, C. He, J. Li, C. Zhang, J. Zhong, Physica E 118, 113870 (2020)

    Google Scholar 

  39. G. Xie, Y. Guo, B. Li, L. Yang, K. Zhang, M. Tang, G. Zhang, Phys. Chem. Chem. Phys. 15, 14647 (2013)

    Google Scholar 

  40. G. Xie, D. Ding, G. Zhang, Adv. Phys. 3, 1480417 (2018)

    Google Scholar 

  41. G. Xie, Z. Ju, K. Zhou, X. Wei, Z. Guo, Y. Cai, G. Zhang, NPJ Comput. Mater. 4, 1 (2018)

    ADS  Google Scholar 

  42. Q. Chen, L.-M. Tang, K.-Q. Chen, H.-K. Zhao, J. Appl. Phys. 114, 084301 (2013)

    ADS  Google Scholar 

  43. P. Zhang, T. Ouyang, C. Tang, C.-Y. He, J. Li, C.-X. Zhang, J.-X. Zhong, Chin. Phys. B 29, 118401 (2020)

    ADS  Google Scholar 

  44. K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 85, 115317 (2012)

    ADS  Google Scholar 

  45. K. Kaasbjerg, K.S. Thygesen, A.-P. Jauho, Phys. Rev. B 87, 235312 (2013)

    ADS  Google Scholar 

  46. D. Fan, H. Liu, L. Cheng, P. Jiang, J. Shi, X. Tang, Appl. Phys. Lett. 105, 133113 (2014)

    ADS  Google Scholar 

  47. P.-P. Sun, L. Bai, D.R. Kripalani, K. Zhou, NPJ Comput. Mater. 5, 1 (2019)

    ADS  Google Scholar 

  48. X.-L. Zhu, C.-H. Hou, P. Zhang, P.-F. Liu, G. Xie, B.-T. Wang, J. Phys. Chem. C 124, 1812 (2019)

    Google Scholar 

  49. E. KraliZ, A. Durrani, Appl. Phys. Lett. 102, 143102 (2013)

    ADS  Google Scholar 

  50. M. Jonson, G. Mahan, Phys. Rev. B 21, 4223 (1980)

    ADS  MathSciNet  Google Scholar 

  51. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’quinn, Nature 413, 597 (2001)

    ADS  Google Scholar 

  52. N. Hinsche, B.Y. Yavorsky, I. Mertig, P. Zahn, Phys. Rev. B 84, 165214 (2011)

    ADS  Google Scholar 

  53. K. Chae, S.-H. Kang, S.-M. Choi, D.Y. Kim, Y.-W. Son, Nano Lett. 18, 4748 (2018)

    ADS  Google Scholar 

  54. J. Sjakste, I. Timrov, P. Gava, N. Mingo, N. Vast, Annu. Rev. Heat Transf. 17, 333–383 (2014). https://doi.org/10.1615/AnnualRevHeatTransfer.2014007320

    Article  Google Scholar 

  55. R. D’Souza, J. Cao, J.D. Querales-Flores, S. Fahy, I. Savić, Phys. Rev. B 102, 115204 (2020)

    ADS  Google Scholar 

  56. F. Murphy-Armando, J. Appl. Phys. 126, 215103 (2019)

    ADS  Google Scholar 

  57. W. Li, Phys. Rev. B 92, 075405 (2015)

    ADS  Google Scholar 

  58. M. Fiorentini, N. Bonini, Phys. Rev. B 94, 085204 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11974300, 11974299, 11704319), Program for Changjiang Scholars and Innovative Research Team in University (IRT13093), Scientific Research Fund of Hunan Provincial Education Department (Nos. 20K127, 20A503, 20B582).

Author information

Authors and Affiliations

Authors

Contributions

ZL and NT contributed equally to this work under the supervision of CT, ZL and NT both performed original calculations and analyzed previously published results. ZL, NT, and CT wrote and edited the manuscript.

Corresponding author

Correspondence to Chao Tang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 226 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Tan, N. & Tang, C. Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study. Eur. Phys. J. B 94, 247 (2021). https://doi.org/10.1140/epjb/s10051-021-00251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00251-3

Navigation