Skip to main content
Log in

Unraveling the electronic structure, mechanical and physical properties of Ag alloyed \(\alpha \)-\(\hbox {Ta}_{\mathbf {5}}\hbox {Si}_{\mathbf {3}}\) via first-principles calculations

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

\(\alpha \)-Ta5Si3 is of considerable interest as a coating material for bioimplants. First-principles density-functional theory (DFT) calculations were performed to investigate the influence of Ag addition on the mechanical and physical properties of \(\alpha \)-\(\hbox {Ta}_{{5}}\hbox {Si}_{{3}}\). The calculated enthalpies of formation indicated that the Ag atoms prefer to substitute the Ta atoms at 16l sites of the \(\hbox {D}8_{\mathrm{l}}\) structure crystal. With increasing Ag content, both the theoretical polycrystalline moduli and hardness of \(\alpha \)-\((\hbox {Ta}_{1-\mathrm{x}}\hbox {Ag}_{\mathrm{x}})_{5}\hbox {Si}_{{3}}\) compounds decreased while the anisotropy of elastic modulus increased. Modelling suggests that \(\alpha \)-\((\hbox {Ta}_{1-{x}}\hbox {Ag}_{{x}})_{5}\hbox {Si}_{{3}}\) compounds become ductile when the concentration of Ag exceeds 9.38 at.%, which may be attributed to weakening of the covalent bonds between Ta and Si atoms when Ta is substituted by Ag. The ternary compounds also exhibit higher anisotropy of thermal expansion coefficients relative to binary \(\alpha \)-\(\hbox {Ta}_{{5}}\hbox {Si}_{{3}}\). Moreover, the addition of Ag to \(\alpha \)-\(\hbox {Ta}_{{5}}\hbox {Si}_{3} \)results in the increase of the acoustic velocity anisotropy and a reduction in the Debye temperature.

Graphical abstract

The mechanical and physical properties of Ag alloyed \(\alpha \)-\(\hbox {Ta}_5\hbox {Si}_3\) were calculated by first-principles density functional theory. Ag atoms are predicted to replace Ta atoms at 16l sites, thereby increasing the thermal expansion anisotropy, ductility and hardness of \(\alpha \)-\(\hbox {Ta}_5\hbox {Si}_3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. W.S.W. Harun, R.I.M. Asri, J. Alias, F.H. Zulkifli, K. Kadirgama, S.A.C. Ghani, J.H.M. Shariffuddin, A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram. Int. 44, 1250–1268 (2018)

    Article  Google Scholar 

  2. N.E. Putra, M.J. Mirzaali, I. Apachitei, J. Zhou, A.A. Zadpoor, Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomater. 109, 1–20 (2020)

    Article  Google Scholar 

  3. M. Hussein, A. Mohammed, N. Al-Aqeeli, Wear characteristics of metallic biomaterials: a review. Materials 8, 2749–2768 (2015)

    Article  ADS  Google Scholar 

  4. N. Eliaz, Corrosion of metallic biomaterials: a review. Materials 12, 407 (2019)

    Article  ADS  Google Scholar 

  5. G. Bolelli, L. Lusvarghi, Tribological properties of HVOF as-sprayed and heat treated Co-Mo-Cr-Si coatings. Tribol. Lett. 25, 43–54 (2006)

    Article  Google Scholar 

  6. Y. Wu, A.H. Wang, Z. Zhang, R.R. Zheng, H.B. Xia, Y.N. Wang, Laser alloying of Ti-Si compound coating on Ti-6Al-4V alloy for the improvement of bioactivity. Appl. Surf. Sci. 305, 16–23 (2014)

    Article  ADS  Google Scholar 

  7. E. Koshevaya, E. Krivoshapkina, P. Krivoshapkin, Tantalum oxide nanoparticles as an advanced platform for cancer diagnostics: a review and perspective. J. Mater. Chem. B 9, 5008–5024 (2021)

    Article  Google Scholar 

  8. A. Shanaghi, A.R. Souri, H. Saedi, P.K. Chu, Effects of the tantalum intermediate layer on the nanomechanical properties and biocompatibility of nanostructured tantalum/tantalum nitride bilayer coating deposited by magnetron sputtering on the nickel titanium alloy. Appl. Nanosci. 11, 1867–1880 (2021)

    Article  ADS  Google Scholar 

  9. C.L. Yeh, W.H. Chen, An experimental investigation on combustion synthesis of transition metal silicides \(\text{ V}_{{5}}\text{ Si}_{{3}}\), \(\text{ Nb}_{{5}}\text{ Si}_{{3}}\), and \(\text{ Ta}_{{5}}\text{ Si}_{{3}}\). J. Alloys Compd. 439, 59–66 (2007)

    Article  Google Scholar 

  10. B. Wan, F. Xiao, Y. Zhang, Y. Zhao, L. Wu, J. Zhang, H. Gou, Theoretical study of structural characteristics, mechanical properties and electronic structure of metal (TM \(=\) V, Nb and Ta) silicides. J. Alloys Compd. 681, 412–420 (2016)

    Article  Google Scholar 

  11. A.A.A.P. da Silva, E.C.T. Ramos, M.I.S.T. Faria, G.C. Coelho, C.A. Nunes, The Ta-Si system: reevaluation of the liquid compositions in the invariant reactions and determination of the invariant reaction involving both \(\upbeta \text{ Ta}_{{5}}\text{ Si}_{{3}}\) and \(\upalpha \text{ Ta}_{{5}}\text{ Si}_{{3}}\) Phases. J. Phase Equilib. Diff. 36, 209–217 (2015)

    Article  Google Scholar 

  12. X. Tao, P. Jund, C. Colinet, J.-C. Tedenac, Phase stability and physical properties of \(\text{ Ta}_{{5}}\text{ Si}_{{3}}\) compounds from first-principles calculations. Phys. Rev. B 80, 104103 (2009)

    Article  ADS  Google Scholar 

  13. Y. Pan, W.M. Guan, Probing the balance between ductility and strength: transition metal silicides. Phys. Chem. Chem. Phys. 19, 19427–19433 (2017)

    Article  Google Scholar 

  14. S. Shi, L. Zhu, H. Zhang, Z. Sun, Toughening of \(\upalpha -\text{ Nb}_{{5}}\text{ Si}_{{3}}\) by Ti. J. Alloys Compd. 689, 296–301 (2016)

    Article  Google Scholar 

  15. H.-Y. Wang, W.-P. Si, S.-L. Li, N. Zhang, Q.-C. Jiang, First-principles study of the structural and elastic properties of \(\text{ Ti}_{{5}}\text{ Si}_{3} \)with substitutions Zr, V, Nb, and Cr. J. Mater. Res. 25, 2317–2324 (2010)

    Article  ADS  Google Scholar 

  16. J.H. Schneibel, C.J. Rawn, Thermal expansion anisotropy of ternary titanium silicides based on \(\text{ Ti}_{{5}}\text{ Si}_{{3}}\). Acta Mater. 52, 3843–3848 (2004)

    Article  ADS  Google Scholar 

  17. L. Zhang, J. Wu, Thermal expansion and elastic moduli of the silicide based intermetallic alloys \(\text{ Ti}_{{5}}\text{ Si}_{{3}}\)(X) and \(\text{ Nb}_{{5}}\text{ Si}_{{3}}\). Scr. Mater. 38, 307–313 (1997)

    Article  Google Scholar 

  18. V. Tvergaard, J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy. J. Am. Ceram. Soc. 71, 157–166 (1988)

    Article  ADS  Google Scholar 

  19. B. Guo, J. Xu, Xl. Lu, S. Jiang, P. Munroe, Z.-H. Xie, Electronic structure, mechanical and physical properties of Ag alloyed \(\upalpha -\text{ Nb}_{{5}}\text{ Si}_{{3}}\): First-principles calculations. Phys. B 564, 80–90 (2019)

    Article  ADS  Google Scholar 

  20. J. Xu, S. Peng, B. Guo, Y.T. Zhao, T. Fu, S.Y. Jiang, P. Munroe, Z.H. Xie, H. Lu, Influence of Ag alloying on the antibacterial properties, bio-corrosion resistance and biocompatibility of alpha-\(\text{ Nb}_{{5}}\text{ Si}_{{3}}\) nanocrystalline coating. Appl. Surf. Sci. 503, 144082 (2020)

    Article  Google Scholar 

  21. M.R. Baren, The Ag-Ta (Silver-Tantalum) system. Bull. Alloy Phase Diagr. 9, 244–245 (1988)

    Article  Google Scholar 

  22. R.W. Olesinski, A.B. Gokhale, G.J. Abbaschian, The Ag-Si (Silver-Silicon) system. Bull. Alloy Phase Diagr. 10, 635–640 (1989)

    Article  Google Scholar 

  23. K. Panda, K. Chandran, First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater. 54, 1641–1657 (2006)

    Article  ADS  Google Scholar 

  24. H. Cui, N. Liu, R. Zhou, D. Li, J. Cheng, First-principles study on the structures and elastic properties of W-Ta-V ternary alloys. Comp. Mater. Sci. 202, 110940 (2022)

    Article  Google Scholar 

  25. C. Colinet, J.-C. Tedenac, First principles calculations of the stability of the T2 and \(\text{ D8}_{{8}}\) phases in the V-Si-B system. Intermetallics 50, 108–116 (2014)

    Article  Google Scholar 

  26. Y.Z. Liu, L. Sun, B.C. Zheng, Y.L. Yi, W.Y. Zhai, J.H. Peng, W. Li, Anisotropic elastic, thermal properties and electronic structures of \(\text{ M}_{{2}}\text{ AlB}_{{2}}\) (M\(=\)Fe, Cr, and Mn) layer structure ceramics. Ceram. Int. 47, 1421–1428 (2021)

    Article  Google Scholar 

  27. Z. Wang, Y. Huang, C.T. Liu, J. Li, J. Wang, Atomic packing and size effect on the Hume-Rothery rule. Intermetallics 109, 139–144 (2019)

    Article  Google Scholar 

  28. I. Papadimitriou, C. Utton, P. Tsakiropoulos, The impact of Ti and temperature on the stability of \(\text{ Nb}_{{5}}\text{ Si}_{{3}}\) phases: a first-principles study. Sci. Technol. Adv. Mater. 18, 467–479 (2017)

    Article  Google Scholar 

  29. X. Xu, W. Zeng, F.-S. Liu, B. Tang, Q.-J. Liu, Pressure-dependent mechanical properties of \(\text{ Nb}_{{5}}\text{ Si}_{{3}}\) phase from first-principles calculations. Phys. Status Solidi B 257, 1900754 (2020)

    Article  ADS  Google Scholar 

  30. W. Zhang, C. Wang, B. Sun, J. Gu, G. Ma, Insight into the phase transition, elastic and thermodynamic properties of BeS compound under high pressure and temperature from the first principle calculation. Vacuum 186, 110017 (2021)

    Article  ADS  Google Scholar 

  31. I. Papadimitriou, C. Utton, A. Scott, P. Tsakiropoulos, Ab initio study of the intermetallics in Nb-Si binary system. Intermetallics 54, 125–132 (2014)

    Article  Google Scholar 

  32. J. Chen, X. Zhang, C. Ying, H. Ma, J. Li, F. Wang, H. Guo, The influence of vacancy defects on elastic and electronic properties of TaSi (5/3) desilicides from a first-principles calculations. Ceram. Int. 46, 10992–10999 (2020)

    Article  Google Scholar 

  33. R.-Y. Li, Y.-H. Duan, Anisotropic elastic properties of MB (M \(=\) Cr, Mo, W) monoborides: a first-principles investigation. Philos. Mag. 96, 972–990 (2016)

    Article  ADS  Google Scholar 

  34. L. Sun, Y. Gao, B. Xiao, Y. Li, G. Wang, Anisotropic elastic and thermal properties of titanium borides by first-principles calculations. J. Alloys Compd. 579, 457–467 (2013)

    Article  Google Scholar 

  35. M. Rajagopalan, S. Praveen Kumar, R. Anuthama, FP-LAPW study of the elastic properties of \(\text{ Al}_{{2}}\)X (X\(=\)Sc, Y, La, Lu). Phys. B 405, 1817–1820 (2010)

    Article  ADS  Google Scholar 

  36. C. Zhao, Q. Wei, H. Yan, B. Wei, Mechanical properties and stability of body-centered-tetragonal \(\text{ C}_{{8}}\) at high pressures. Z. Naturforsch. A 73, 939–945 (2018)

    Article  ADS  Google Scholar 

  37. X.-H. Li, C.-H. Xing, H.-L. Cui, R.-Z. Zhang, Elastic and acoustical properties of \(\text{ Cr}_{{3}}\text{ AlB}_{{4}}\) under pressure. J. Phys. Chem. Solids 126, 65–71 (2019)

    Article  ADS  Google Scholar 

  38. N. Korozlu, K. Colakoglu, E. Deligoz, S. Aydin, The elastic and mechanical properties of MB12 (M\(=\)Zr, Hf, Y, Lu) as a function of pressure. J. Alloys Compd. 546, 157–164 (2013)

    Article  Google Scholar 

  39. H. Hu, X. Wu, R. Wang, W. Li, Q. Liu, First principles study on the phase stability and mechanical properties of \(\text{ MoSi}_{{2}}\) alloyed with Al, Mg and Ge. Intermetallics 67, 26–34 (2015)

    Article  Google Scholar 

  40. B. Zheng, M. Zhang, C. Wang, Exploring the mechanical anisotropy and ideal strengths of tetragonal \(\text{ B}_{{4}}\text{ CO}_{{4}}\). Materials 10, 128 (2017)

    Article  ADS  Google Scholar 

  41. S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  42. J. Feng, B. Xiao, R. Zhou, W. Pan, D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer \(\text{ Ln}_{{2}}\text{ SrAl}_{{2}}\text{ O}_{7}\)(Ln\(=\)La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure. Acta Mater. 60, 3380–3392 (2012)

    Article  ADS  Google Scholar 

  43. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: application to \(\text{ TiSi}_{{2}}\). J. Appl. Phys. 84, 4891–4904 (1998)

    Article  ADS  Google Scholar 

  44. M.K. Niranjan, Anisotropy in elastic properties of \(\text{ TiSi}_{{2}}\)(C49, C40 and C54), TiSi and \(\text{ Ti}_{{5}}\text{ Si}_{{3}}\): anab-initiodensity functional study. Mater. Res. Express 2, 096302 (2015)

    Article  ADS  Google Scholar 

  45. Y. Yang, H. Lu, C. Yu, J.M. Chen, First-principles calculations of mechanical properties of TiC and TiN. J. Alloys Compd. 485, 542–547 (2009)

    Article  Google Scholar 

  46. Y. Chen, Z. Xue, S. Zhang, Y. Liu, X. Zhang, First principles calculations of the influence of nitrogen content on the mechanical properties of \(\upalpha \)-Ti. Mater. Chem. Phys. 248, 122891 (2020)

    Article  Google Scholar 

  47. P.F. Zhang, Y.X. Li, P.K. Bai, First principles study of \(\text{ Ti}_{{5}}\text{ Si}_{{3}}\) intermetallic compounds with Cu additions: elastic properties and electronic structure. IOP Conf. Ser.: Mater. Sci. Eng. 284, 012013 (2017)

    Article  Google Scholar 

  48. D. Hong, W. Zeng, M. Zhong, X. Xu, F.-S. Liu, B. Tang, Q.-J. Liu, Structural, electronic properties and boron stability of (001) surface of \(\text{ Nb}_{{5}}\text{ Si}_{{3}}\) intermetallic by first-principles calculations. Vacuum 179, 109558 (2020)

    Article  ADS  Google Scholar 

  49. Y. Kang, Y. Han, S. Qu, J. Song, Effects of alloying elements Ti, Cr, Al, and Hf on \(\upbeta -\text{ Nb}_{{5}}\text{ Si}_{{3}}\) from first-principles calculations. Chin. J. Aeronaut. 22, 206–210 (2009)

    Article  Google Scholar 

  50. Y. Pan, Y. Lin, H. Wang, C. Zhang, Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles. Mater. Design 86, 259–265 (2015)

    Article  Google Scholar 

  51. L.A. Valdez, M.A. Caravaca, R.A. Casali, Ab-initio study of elastic anisotropy, hardness and volumetric thermal expansion coefficient of ZnO, ZnS, ZnSe in wurtzite and zinc blende phases. J. Phys. Chem. Solids 134, 245–254 (2019)

    Article  ADS  Google Scholar 

  52. M.A. Azim, H.J. Christ, B. Gorr, T. Kowald, O. Lenchuk, K. Albe, M. Heilmaier, Effect of Ti addition on the thermal expansion anisotropy of \(\text{ Mo}_{{5}}\text{ Si}_{{3}}\). Acta Mater. 132, 25–34 (2017)

    Article  ADS  Google Scholar 

  53. Q. Wei, Q. Zhang, M. Zhang, Mechanical and electronic properties of \(\text{ XC}_{{6}}\) and \(\text{ XC}_{{12}}\). Materials 9, 726 (2016)

    Article  ADS  Google Scholar 

  54. K. Brugger, Erratum: Determination of third-order elastic coefficients in crystals. J. Appl. Phys. 36, 3364 (1965)

  55. X. Gao, Y. Jiang, R. Zhou, J. Feng, Stability and elastic properties of Y-C binary compounds investigated by first principles calculations. J. Alloys Compd. 587, 819–826 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Natural Science Foundation of China for its financial support under projects of numbers 52075245 and 51635004.

Author information

Authors and Affiliations

Authors

Contributions

SP: writing-original draft preparation. JX: supervision, investigation and data curation. SJ: reviewing and editing. Z-HX: reviewing and editing. PM: reviewing and editing.

Corresponding author

Correspondence to Jiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Xu, J., Jiang, S. et al. Unraveling the electronic structure, mechanical and physical properties of Ag alloyed \(\alpha \)-\(\hbox {Ta}_{\mathbf {5}}\hbox {Si}_{\mathbf {3}}\) via first-principles calculations. Eur. Phys. J. B 94, 238 (2021). https://doi.org/10.1140/epjb/s10051-021-00241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00241-5

Navigation