Skip to main content

Advertisement

Log in

Theoretical prediction of anisotropic in elasticity, density of states and thermodynamic properties of Ti–X (X = Fe, Co, Zn)

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, The mechanical properties, band structure, density of states and thermodynamic properties (at a temperature of 0–1200 K and a pressure of 0–40 GPa) of the Ti–X (X = Fe, Co, Zn) alloy are calculated by first-principles calculations based on density functional theory (DFT). The results show that the Ti–X (X = Fe, Co, Zn) alloy has mechanical stability and plasticity, and elasticity is anisotropic. By analyzing elastic anisotropy index (\({\varvec{{A}}}^{\mathbf {U}}, {\varvec{{A}}}_{\mathbf {shera}}, {\varvec{{A}}}_{\mathbf {comp}}, {\varvec{{A}}}_{\mathbf {1}},{\varvec{{A}}}_{\mathbf {2}}, {\varvec{{A}}}_{\mathbf {3}}\)), 3D surface constructions and sound velocities, which shows that the elasticity and sound velocities of Ti–X (X = Fe, Co, Zn) alloy is anisotropic.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Due to the cooperative relationship with other institutions, our calculation data will be provided to them as a guide for the experiment, so we cannot provide data at this time.]

References

  1. Q. Liu, Research progress and application of titanium alloys. Aerosp. Manuf. Technol. 04, 45–48, 55 (2011)

  2. Y.S. Tian, C.Z. Chen, D.Y. Wang et al., Research progress of laser surface treatment on titanium alloys. Heat Treat. Metals 08, 29–34 (2005)

  3. I.P. Konakova et al., The structure and mechanical properties of single-crystal nickel alloys with Re and Ru after high-temperature holds. Mater. Sci. Eng. A Struct. Mater. Prop. Misrostruct. Process. 642, 304–308 (2015)

    Article  Google Scholar 

  4. J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2), 92–102 (1998)

    Article  Google Scholar 

  5. L. Hallmann, P. Ulmer, M. Kern, Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics. J. Mech. Behav. Biomed. Mater. 82, 355–370 (2018)

    Article  Google Scholar 

  6. J.Y. Raty, M. Schumacher, P. Golub et al., A quantum—map for bonding and properties in solids. Adv. Mater. 31(3), 1806280 (2019)

    Article  Google Scholar 

  7. F. Colmenero, A.M. Fernández, V. Timón et al., Becquerelite mineral phase: crystal structure and thermodynamic and mechanical stability by using periodic DFT. RSC Adv. 8(43), 24599–24616 (2018)

    Article  ADS  Google Scholar 

  8. Q. Zheng, J. Jiang, J. Yu et al., Aluminum-induced interfacial strengthening in calcium silicate hydrates: structure, bonding, and mechanical properties. ACS Sustain. Chem. Eng. 8(7), 2622–2631 (2020)

    Article  Google Scholar 

  9. G. Forozani, A.A.M. Abadi, S.M. Baizaee et al., Structural, electronic and magnetic properties of CoZrIrSi quaternary Heusler alloy: first-principles study. J. Alloy. Compd. 815, 152449 (2020)

    Article  Google Scholar 

  10. B. Pradines, R. Arras, I. Abdallah et al., First-principles calculation of the effects of partial alloy disorder on the static and dynamic magnetic properties of Co2 MnSi. Phys. Rev. B 95(9), 094425 (2017)

    Article  ADS  Google Scholar 

  11. T. Komatsu, H. Kobayashi, K. Kusada et al., First-principles calculation, synthesis and catalytic properties of Rh-Cu alloy nanoparticles. Chem. Eur. J. 23, 57–60 (2017)

    Article  Google Scholar 

  12. M. Shakil, S. Mushtaq, I. Zeba et al., Structural, electronic, magnetic and thermoelectric properties of full Heusler alloys Co2YZ (Z\(=\) S, Ge, Se): a first principles calculation. Phys. B 602, 412558 (2021)

    Article  Google Scholar 

  13. J.H. Dai, X. Wu, Y. Song et al., Electronic structure mechanism of martensitic phase transformation in binary titanium alloys. J. Appl. Phys. 112(12), 92–338 (2012)

    Article  Google Scholar 

  14. M.K. Gouda, K. Nakamura, M. Gepreel, First-principles study on the effect of alloying elements on the elastic deformation response in \(\beta \)-titanium alloys. J. Appl. Phys. 117(21), 881 (2015)

    Article  Google Scholar 

  15. J. Yan, H. Shou, M. Peng et al., The anisotropic properties and Debye temperatures of Ti-Zn compounds: a first-principles calculation. Mater. Res. Express 6(11), 116528 (2019)

    Article  ADS  Google Scholar 

  16. S.E. Kulkova, S.S. Kulkov, A.V. Bakulin et al., First-principles study of the hydrogen absorption at \(\Sigma \)5 symmetrical tilt grain boundary in B2-TiFe alloy. Int. J. Hydrogen Energy 37(8), 6666–6673 (2012)

    Article  Google Scholar 

  17. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  18. J.P. Perdew, K. Burke, W. Yue, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B Condens. Matter 54(22), 16533–16539 (1997)

    ADS  Google Scholar 

  19. M.A. Blanco, E. Francisco, V. Luaa, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, science direct. Comput. Phys. Commun. 158(1), 57–72 (2004)

    Article  ADS  Google Scholar 

  20. S.G. Zhou, C. Zhang, P.H. Luo et al., Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM\(=\)Ni, Fe, Ti). Appl. Phys. A 126(12), 1–12 (2020)

    Google Scholar 

  21. W. Bao, D. Liu, Y. Duan et al., First-principles predictions of anisotropies in elasticity and sound velocities of CsCl-type refractory intermetallics: TiTM, ZrTM and HfTM (TM \(=\) Fe, Ru, Os). Philos. Mag. 99(21), 1–22 (2019)

    Article  Google Scholar 

  22. B. Fatima, N. Acharya, S.P. Sanyal, Electronic structure, elasticity, bonding features and mechanical behaviour of zinc intermetallics: A DFT study. In: International Conference on Condensed Matter and Applied Physics. AIP Publishing LLC (2016)

  23. M. Born, The dynamical theory of crystal lattices. Am. J. Phys. 23(7), 474–475 (1955)

  24. S.A. Muslov, V.N. Khachin, V.G. Pushin et al., Elastic properties and structure of alloys TiNi-TiFe before martensitic transformations. Lett. Mater. 5(4), 420–423 (2015)

    Article  Google Scholar 

  25. C. Tan, C. Wei, J. Zhu, First-principles study on the elastic properties and electronic structure of TiNi-based ternary shape memory alloys. Phys. Status Solidi B-Basic Solid State Phys. 243(11), R69–R71 (2006)

  26. G. Ghosh, S. Delsante, G. Borzone et al., Phase stability and cohesive properties of Ti-Zn intermetallics: first-principles calculations and experimental results. Acta Mater. 54(19), 4977–4997 (2006)

    Article  ADS  Google Scholar 

  27. R. Yang, Z. Zhao, F. Wu et al., Study on structural, mechanical, electronic properties and debye temperature of four NbN structures. Comput. Theor. Chem. 1196(7), 113113 (2020)

    Google Scholar 

  28. Y.X. Zhao, H. Li, Y.C. Huang, The structure, mechanical, electronic and thermodynamic properties of bcc Zr-Nb alloy: A first principles study. J. Alloys Comp. 862, 158029 (2021)

  29. V.N. Klimenko, V.A. Lavrenko, O.A. Panasyuk, et al. The influence of FeTi and NiTi intermetallide additions on high-temperature oxidation of permalloy alloy. Powder Metall. Metal Ceram. 34(5), 314–316 (1995)

  30. B. Fatima, S.P. Sanyal, Ab initio study of electronic structure, elasticity, bonding features and mechanical behaviour of zinc intermetallics. Comput. Condens. Matter 14, 144–152 (2018)

    Article  Google Scholar 

  31. N.E. Dowling, Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Int. J. Fatigue 19(96), 85 (1999)

    Google Scholar 

  32. D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)

    Article  Google Scholar 

  33. S. Wu, X. Wu, R. Wang et al., Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl. Intermetallics 55, 108–117 (2014)

    Article  Google Scholar 

  34. G.N. Greaves, A. Greer, R. Lakes, T. Rouxel, Poissons ratio and modern materials. Nat. Mater. 10, 823–837 (2011)

    Article  ADS  Google Scholar 

  35. M. De Jong, D.L. Olmsted, A. van de Walle, M. Asta, First-principles study of the structural and elastic properties of rhenium-based transition-metal alloys. Phys. Rev. B 86, 224101 (2012)

    Article  ADS  Google Scholar 

  36. Z. Mao, W. Chen, D.N. Seidman, C. Wolverton, First-principles study of the nucleation and stability of ordered precipitates internary Al-Sc-Li alloys. Acta Mater. 59, 3012–3023 (2011)

    Article  ADS  Google Scholar 

  37. X.Q. Chen, H. Niu, D. Li et al., Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19(9), 1275–1281 (2011)

    Article  Google Scholar 

  38. Y. Tian, X. Bo, Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Metals Hard Mater. 33, 93–106 (2012)

    Article  Google Scholar 

  39. H. Koc, H. Ozisik, E. Deligöz et al., Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. J. Mol. Model. 20(4), 2180 (2014)

    Article  Google Scholar 

  40. C.M. Kube, Elastic anisotropy of crystals. AIP Adv. 6(9), 095209 (2016)

    Article  ADS  Google Scholar 

  41. Z. Kong, M. Peng, Y. Sun et al., Theoretical predictions of elastic anisotropies and thermal properties of TMRe2 (TM \(=\) Sc, Y, Zr and Hf). Phys. B: Condens. Matter 571, 222–228 (2019)

  42. Y.H. Duan, Z.Y. Wu, B. Huang et al., Phase stability and anisotropic elastic properties of the Hf-Al intermetallics: a DFT calculation. Comput. Mater. Sci. 110, 10–19 (2015)

    Article  Google Scholar 

  43. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA. 30(9), 244 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  44. H. Chen, The mechanical and thermodynamic properties of \(a\)-Na3(U0.84(20), Na0.16(2))O4: a combined first-principles calculations and quasi-harmonic Debye model study. Nucl. Eng. Technol. 53, 611–617 (2021)

  45. D. Jiang, W. Xiao, D. Liu et al., Structural stability, electronic structures, mechanical properties and debye temperature of W-Re alloys: a first-principles study. Fusion Eng. Des. 162, 112081 (2020)

    Article  Google Scholar 

  46. D. Music, A. Houben, R. Dronskowski et al., Ab initio study of ductility in M\(_2\) AlC (M \(=\) Ti, V, Cr). Phys. Rev. B 75(17) (2007)

  47. S. Chen, Y. Sun, Y.H. Duan et al., Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations. J. Alloys Compd. 630, 202–208 (2015)

    Article  Google Scholar 

  48. F. Arab, F.A. Sahraoui, K. Haddadi, A. Bouhemadou, L. Louail, Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN 2: an ab initio study. Phase Transit. 89, 480–513 (2016)

    Article  Google Scholar 

  49. H.W. Shou, R.Y. Xie, M.J. Peng et al., Stability and electronic structures of the Ti-Zn intermetallic compounds: a DFT calculation. Phys. B Condens. Matter 560, 41–45 (2019)

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of People’s Republic of China (NSFC51761021 and NSFC51761020).

Funding

This research was supported by the National Natural Science Foundation of People’s Republic of China (NSFC51761021) and (NSFC51761020). There are no other relationships or activities that could appear to have influenced the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Shenggang Zhou.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Luo, P., Xu, Y. et al. Theoretical prediction of anisotropic in elasticity, density of states and thermodynamic properties of Ti–X (X = Fe, Co, Zn). Eur. Phys. J. B 94, 246 (2021). https://doi.org/10.1140/epjb/s10051-021-00240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00240-6

Navigation