Skip to main content
Log in

A first-principles study for the elastic and mechanical properties of Ti64, Ti6242 and Ti6246 alloys

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

First-principles density functional theory (DFT) study calculations were performed for various elastic and mechanical properties of Ti64, Ti6242 and Ti6246 alloys. Generalized gradient approximation and the Perdew–Burke–Ernzerhof scheme of DFT were employed to present calculations together with virtual crystal approximation. All of the investigated alloys were found to be in ductile mechanical behavior. Also, machinability indexes of the concerned alloys were calculated and compared. Further, computed Vickers hardness values were determined to be in the range of Ti6242>Ti64>Ti6246. Obtained results for several elastic parameters, in particular for shear modulus (G) and Young’s modulus (E) compare well the former experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. T.M. Kravchyshyn, I.M. Pohrelyuk, S.M. Lavrys, Mater. Sci. 56, 516 (2021)

    Article  Google Scholar 

  2. E. Güler, G. Uğur, Ş Uğur, M. Güler, R. Khenata, Bull Mater Sci. 44, 37 (2021)

    Article  Google Scholar 

  3. DYu. Pimenov, M. Mia, M.K. Gupta, A.R. Machado, Í.V. Tomaz, M. Sarikaya, S. Wojciechowski, T. Mikolajczyk, W. Kapłonek, J. Mater. Res. Technol. 11, 719 (2021)

    Article  Google Scholar 

  4. J.W. Nicholson, Prosthesis 2, 100 (2020)

    Article  Google Scholar 

  5. H. Wang, Q. Chao, L. Yang, M. Cabral, Z.Z. Song, B.Y. Wang, S. Primig, W. Xu, Z.B. Chen, S.P. Ringer, X.Z. Liao, Mat. Res. Lett. 9, 119 (2020)

    Article  Google Scholar 

  6. F. Brunke, C. Siemers, J. Rösler, MATEC Web Conf. 321, 05006 (2020)

    Article  Google Scholar 

  7. Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control, 1st edn. (Butterworth-Heinemann, Burlington, 2006)

    Google Scholar 

  8. A. Heldmann, M. Hoelzel, M. Hofmann, W. Gan, W.W. Schmahl, E. Griesshaber, T. Hansen, N. Schell, W. Petry, J. Appl. Cryst. 52, 1144 (2019)

    Article  Google Scholar 

  9. A. Gomez-Gallegos, P. Mandal, D. Gonzalez, N. Zuelli, P. Blackwell, Defect diffus. Forum 385, 419 (2018)

    Google Scholar 

  10. R. Gaddam, B. Sefer, R. Pederson, M.-L. Antti, IOP Conf. Ser. Mater. Sci. Eng. 48, 012002 (2013)

    Article  Google Scholar 

  11. M. Long, H.J. Rack, Biomaterials 19, 1621 (1998)

    Article  Google Scholar 

  12. X. Yang, C. Richard Liu, Mach. Sci. Technol. 3, 107 (1999)

    Article  Google Scholar 

  13. R. Wanhill, S. Barter (Eds.), Metallurgy and microstructure. In Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys (Springer, Amsterdam, 2011)

  14. I. Sen, U. Ramamurty, Scr. Mater. 62, 37 (2010)

    Article  Google Scholar 

  15. Z. Feng, Y. Yang, Z. Xu, Q. Shi, Mat. Res. 21(4), e20180197 (2018)

    Article  Google Scholar 

  16. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr, Cryst. Mater. 220(5–6), 567 (2005)

    Google Scholar 

  17. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002)

    Article  ADS  Google Scholar 

  18. B. Winkler, C. Pickard, V. Milman, Chem. Phys. Lett. 362, 266 (2002)

    Article  ADS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, B. Perdew, E. Reply, Phys. Rev. Lett. 80, 891 (1998)

    Article  ADS  Google Scholar 

  21. M. Güler, E. Güler, Ş Uğur, G. Uğur, Z. Charifi, H. Baaziz, Phys. Scr. 96, 035807 (2021). ((and references there in))

    Article  ADS  Google Scholar 

  22. D. Vanderbilt, Phys. Rev. B. 41, 7892 (1990)

    Article  ADS  Google Scholar 

  23. M Catti, Acta Crystallogr. A, 41(5), 494 (1985), L. Colombo, S. Giordano, Rep. Prog. Phys. 74 116501 (2011)

  24. T.M. Atanackovic, A. Guran, Theory of Elasticity for Scientists and Engineers, 1st edn. (Birkhäuser, Boston, 2000), pp. 85–111

    Book  Google Scholar 

  25. M.A. Hadi, N. Kelaidis, S.H. Naqib, A. Chroneos, A.K.M.A. Islam, J. Phys. Chem. Solids 129, 162 (2019)

    Article  ADS  Google Scholar 

  26. T. Chihi, M. Fatmi, B. Ghebouli, M.A. Ghebouli, Chin. J. Phys. 54, 127 (2016)

    Article  Google Scholar 

  27. E. Güler, M. Güler, Ş Uğur, G. Uğur, Int. J. Quantum Chem. 121, e26606 (2021)

    Article  Google Scholar 

  28. Ş Uğur, M. Güler, G. Uğur, E. Güler, J. Magn. Magn. Mater. 523, 167614 (2021)

    Article  Google Scholar 

  29. M. Güler, Ş Uğur, G. Uğur, E. Güler, J. Mol. Struct. 1200, 127150 (2020)

    Article  Google Scholar 

  30. Q. Chen, L. Liu, C. Zhu, K. Chen, Metals 8, 822 (2018)

    Article  Google Scholar 

  31. A.M. Stapleton, S.L. Raghunathan, I. Bantounas, H.J. Stone, T.C. Lindley, D. Dye, Acta Mater. 56, 6186 (2008)

    Article  ADS  Google Scholar 

  32. M.A. Hadi, M.A. Rayhan, S.H. Naqib, A. Chroneos, A.K.M.A. Islam, Comput. Mater. Sci. 170, 109144 (2019)

    Article  Google Scholar 

  33. A.K. Kushwaha, Ş Uğur, M. Güler, E. Güler, G. Uğur, Physica B Condens. Mater. 596, 412404 (2020)

    Article  Google Scholar 

  34. M. Güler, Ş. Uğur, G. Uğur, E. Güler, Mol. Phys. 119, e1928314 (2021)

  35. Q. Meng, J. Zhang, Y. Huo, Y. Sui, J. Zhang, S. Guo, X. Zhao, J. Alloys Compd. 745, 579 (2018)

    Article  Google Scholar 

  36. M. Güler, E. Güler, Braz. J. Phys. 46, 192 (2016)

    Article  ADS  Google Scholar 

  37. E. Güler, M. Güler, Appl. Phys. A 119, 721 (2015)

    Article  ADS  Google Scholar 

  38. E. Güler, M. Güler, Mater. Res. 17, 1268 (2014)

    Article  Google Scholar 

  39. E. Güler, M. Güler, Chin. J. Phys. 53(2), 040807 (2015)

    Google Scholar 

  40. M. Güler, E. Güler, Crystals 7, 161 (2017)

    Article  Google Scholar 

  41. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Hard. Met. 33, 93 (2012)

    Article  Google Scholar 

  42. M.A. Hadi, M.N. Islam, M.H. Babu, Z Naturforsch A. 74, 71 (2018)

    Article  ADS  Google Scholar 

  43. M.I. Naher, S.H. Naqib, Sci. Rep. 11, 5592 (2021)

    Article  ADS  Google Scholar 

  44. M.M. Hossain, M.A. Ali, M.M. Uddin, A.K.M.A. Islam, S.H. Naqib, J. Appl. Phys. 129, 175109 (2021)

    Article  ADS  Google Scholar 

  45. C.M. Kube, Elastic anisotropy of crystals. AIP Adv. 6, 095209 (2016)

    Article  ADS  Google Scholar 

  46. S. Wolff, T. Lee, E. Faierson, K. Ehmann, J. Cao, J. Manuf. Process. 24, 397 (2016)

    Article  Google Scholar 

  47. S.I. Ranganathan, M. Ostoja-Starzewski, Universal Elastic Anisotropy Index. Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  48. J.C.F. Millett, G. Whiteman, N.K. Bourne, G.T. Gray, J. Appl. Phys. 104, 073531 (2008)

    Article  ADS  Google Scholar 

  49. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Nat. Mater. 10, 823 (2011)

    Article  ADS  Google Scholar 

  50. M.A. Hadi, M.T. Nasir, M. Roknuzzaman, M.A. Rayhan, S.H. Naqib, A.K.M.A. Islam, Phys. Status Solidi B. 253, 2020 (2016)

    Article  ADS  Google Scholar 

  51. E.S. Fisher, C.J. Renken, Phys. Rev. 135, A482 (1964)

    Article  ADS  Google Scholar 

  52. R. Ma, Investigating the evolution of microtextured region in Ti-6242 using FE-FFT multiscale modeling method, Ph.D. Thesis, The University of Tennessee, Knoxville (2018)

  53. R. Rajendran, V. Petley, B. Rehmer, Proc. Inst. Mech. Eng. Pt. L J. Mater. Des. Appl. 227, 243 (2012)

  54. T.K. Heckel, A. Guerrero-Tovar, H.-J. Christ, Exp. Mech. 52, 323 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güler, E., Güler, M., Uğur, G. et al. A first-principles study for the elastic and mechanical properties of Ti64, Ti6242 and Ti6246 alloys. Eur. Phys. J. B 94, 222 (2021). https://doi.org/10.1140/epjb/s10051-021-00230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00230-8

Navigation