Skip to main content
Log in

Emerging magnetic nutation

  • Regular Article – Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Nutation has been recognized as of great significance for spintronics; but justifying its presence has proven to be a hard problem. In this paper, we show that nutation can be understood as emerging from a systematic expansion of a kernel that describes the history of the interaction of a magnetic moment with a bath of colored noise. The parameter of the expansion is the ratio of the colored noise timescale to the precession period. In the process we obtain the Gilbert damping from the same expansion. We recover the known results, when the coefficients of the two terms are proportional to one another, in the white noise limit; and show how colored noise leads to situations where this simple relation breaks down, but what replaces it can be understood by the appropriate generalization of the fluctuation–dissipation theorem. Numerical simulations of the stochastic equations support the analytic approach. high temperature limitIn particular, we find that the equilibration time is about an order of magnitude longer than the timescale set by the colored noise for a wide range of values of the latter and we can identify the presence of nutation in the non-uniform way the magnetization approaches equilibrium.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availibility Statement

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: This manuscript has associated software in the Zenodo repository under the reference https://doi.org/10.5281/zenodo.5543203.]

References

  1. K. Neeraj, N. Awari, S. Kovalev, D. Polley, N. Zhou Hagström, S.S.P.K. Arekapudi, A. Semisalova, K. Lenz, B. Green, J.C. Deinert, I. Ilyakov, M. Chen, M. Bawatna, V. Scalera, M. d’Aquino, C. Serpico, O. Hellwig, J.E. Wegrowe, M. Gensch, S. Bonetti, Nat. Phys., 1–6 (2020). https://doi.org/10.1038/s41567-020-01040-y

  2. T.L. Gilbert, J.M. Kelly, In Conference on Magnetism and Magnetic Materials (PA, Pittsburgh, 1955), pp. 253–263

  3. I. Makhfudz, E. Olive, S. Nicolis, Appl. Phys. Lett. 117(13), 132403 (2020). https://doi.org/10.1063/5.0013062

    Article  ADS  Google Scholar 

  4. C. Cohen-Tannoudji, B. Diu, F. Laloë, S.R. Hemley, Quantum Mechanics (Wiley, New York, 1993)

    MATH  Google Scholar 

  5. P. Thibaudeau, T. Nussle, S. Nicolis, J. Magn. Magn. Mater. 432, 175 (2017). https://doi.org/10.1016/j.jmmm.2017.01.088

    Article  ADS  Google Scholar 

  6. R. Mondal, M. Berritta, A.K. Nandy, P.M. Oppeneer, Phys. Rev. B 96, 024425 (2017). https://doi.org/10.1103/PhysRevB.96.024425

    Article  ADS  Google Scholar 

  7. A. Aharoni, Introduction to the Theory of Ferromagnetism (Clarendon Press, Oxford, 2000)

    Google Scholar 

  8. S. Chikazumi, Physics of Ferromagnetism. International Series of Monographs on Physics (Oxford Science Publications, 1997)

  9. V. Seshadri, K. Lindenberg, Physica A 115(3), 501 (1982). https://doi.org/10.1016/0378-4371(82)90036-X

    Article  ADS  Google Scholar 

  10. A.M. Jayannavar, Z. Physik B Condens. Matter 82(1), 153 (1991). https://doi.org/10.1007/BF01313998

    Article  ADS  Google Scholar 

  11. E. Rossi, O.G. Heinonen, A.H. MacDonald, Phys. Rev. B 72(17), 174412 (2005). https://doi.org/10.1103/PhysRevB.72.174412

    Article  ADS  Google Scholar 

  12. C. Vittoria, S.D. Yoon, A. Widom, Phys. Rev. B 81(1), 014412 (2010). https://doi.org/10.1103/PhysRevB.81.014412

    Article  ADS  Google Scholar 

  13. K. Miyazaki, K. Seki, J. Chem. Phys. 108(17), 7052 (1998). https://doi.org/10.1063/1.476123

    Article  ADS  Google Scholar 

  14. T. Bose, S. Trimper, Phys. Rev. B 83, 134434 (2011). https://doi.org/10.1103/PhysRevB.83.134434

    Article  ADS  Google Scholar 

  15. J. Anders, C.R.J. Sait, S.A.R. Horsley. arXiv:2009.00600 [cond-mat, physics:quant-ph] (2020)

  16. P. Nieves, D. Serantes, U. Atxitia, O. Chubykalo-Fesenko, Phys. Rev. B 90(10), 104428 (2014). https://doi.org/10.1103/PhysRevB.90.104428

    Article  ADS  Google Scholar 

  17. E. Maniv, N.L. Nair, S.C. Haley, S. Doyle, C. John, S. Cabrini, A. Maniv, S.K. Ramakrishna, Y.L. Tang, P. Ercius, R. Ramesh, Y. Tserkovnyak, A.P. Reyes, J.G. Analytis, Sci. Adv. 7(2), eabd8452 (2021). https://doi.org/10.1126/sciadv.abd8452

  18. F. Belletti, M. Cotallo, A. Cruz, L.A. Fernandez, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor, A.M. Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J.J. Ruiz-Lorenzo, S.F. Schifano, D. Sciretti, A. Tarancon, R. Tripiccione, J.L. Velasco, D. Yllanes, Phys. Rev. Lett. 101(15), 157201 (2008). https://doi.org/10.1103/PhysRevLett.101.157201

    Article  ADS  Google Scholar 

  19. D.G. Ashworth, P.A. Davies, J. Phys. A Math. Gen. 12(9), 1425 (1979). https://doi.org/10.1088/0305-4470/12/9/011

    Article  ADS  Google Scholar 

  20. J.M. Rubi, A. Perez-Madrid, Physica A 264(3), 492 (1999). https://doi.org/10.1016/S0378-4371(98)00476-2

    Article  ADS  Google Scholar 

  21. M.C. Ciornei, J.M. Rubí, J.E. Wegrowe, Phys. Rev. B 83, 020410(R) (2011). https://doi.org/10.1103/PhysRevB.83.020410

    Article  ADS  Google Scholar 

  22. S. Bhattacharjee, L. Nordström, J. Fransson, Phys. Rev. Lett. 108(5), 057204 (2012). https://doi.org/10.1103/PhysRevLett.108.057204

    Article  ADS  Google Scholar 

  23. A.A. Pervishko, M.I. Baglai, O. Eriksson, D. Yudin, Sci. Rep. 8(1), 17148 (2018). https://doi.org/10.1038/s41598-018-35517-x

    Article  ADS  Google Scholar 

  24. R. Mondal, M. Berritta, P.M. Oppeneer, J. Phys. Condens. Matter 30(26), 265801 (2018). https://doi.org/10.1088/1361-648X/aac5a2

    Article  ADS  Google Scholar 

  25. R. Bastardis, F. Vernay, H. Kachkachi, Phys. Rev. B 98(16), 165444 (2018). https://doi.org/10.1103/PhysRevB.98.165444

    Article  ADS  Google Scholar 

  26. L. Néel, Science 174(4013), 985 (1971). https://doi.org/10.1126/science.174.4013.985

    Article  ADS  Google Scholar 

  27. F.S.M. Guimarães, J.R. Suckert, J. Chico, J. Bouaziz, M.D.S. Dias, S. Lounis, J. Phys.: Condens. Matter 31(25), 255802 (2019). https://doi.org/10.1088/1361-648X/ab1239

  28. V. Kamberský, Can. J. Phys. 48(24), 2906 (1970). https://doi.org/10.1139/p70-361

    Article  ADS  Google Scholar 

  29. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  30. G. Parisi, N. Sourlas, Nucl. Phys. B 206(2), 321 (1982). https://doi.org/10.1016/0550-3213(82)90538-7

    Article  ADS  Google Scholar 

  31. S. Nicolis (2019). arXiv:1405.0820

  32. S. Giordano, P.M. Déjardin, Phys. Rev. B 102(21), 214406 (2020). https://doi.org/10.1103/PhysRevB.102.214406

    Article  ADS  Google Scholar 

  33. S.V. Titov, W.T. Coffey, Y.P. Kalmykov, M. Zarifakis, A.S. Titov, Phys. Rev. B 103(14), 144433 (2021). https://doi.org/10.1103/PhysRevB.103.144433

    Article  ADS  Google Scholar 

  34. U. Atxitia, O. Chubykalo-Fesenko, R.W. Chantrell, U. Nowak, A. Rebei, Phys. Rev. Lett. 102, 057203 (2009). https://doi.org/10.1103/PhysRevLett.102.057203

    Article  ADS  Google Scholar 

  35. J. Zinn-Justin, Phase Transitions and Renormalization Group (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  36. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn. No. 113 in International Series of Monographs on Physics (Clarendon Press ; Oxford University Press, Oxford : New York, 2002)

  37. L.F. Cugliandolo, V. Lecomte, J. Phys. A: Math. Theor. 50(34), 345001 (2017). https://doi.org/10.1088/1751-8121/aa7dd6

    Article  Google Scholar 

  38. J. Zinn-Justin, Path Integrals in Quantum Mechanics, Oxford Graduate Texts, reprint. (Oxford University Press, Oxford, 2009)

    MATH  Google Scholar 

  39. C.W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer series in synergetics, 4th edn. (Springer, Berlin, 2009)

    MATH  Google Scholar 

  40. N.G.V. Van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992)

    MATH  Google Scholar 

  41. J. Tranchida, P. Thibaudeau, S. Nicolis, Phys. Rev. E 98(4), 042101 (2018). https://doi.org/10.1103/PhysRevE.98.042101

    Article  ADS  MathSciNet  Google Scholar 

  42. A.J. Weir, Lebesgue Integration and Measure (University Press, Cambridge [Eng.], 1973)

  43. I. Garate, A. MacDonald, Phys. Rev. B 79(6), 064403 (2009). https://doi.org/10.1103/PhysRevB.79.064403

    Article  ADS  Google Scholar 

  44. I. Garate, K. Gilmore, M.D. Stiles, A.H. MacDonald, Phys. Rev. B 79(10), 104416 (2009). https://doi.org/10.1103/PhysRevB.79.104416

    Article  ADS  Google Scholar 

  45. D. Thonig, Y. Kvashnin, O. Eriksson, M. Pereiro, Phys. Rev. Mater. 2(1), 013801 (2018). https://doi.org/10.1103/PhysRevMaterials.2.013801

    Article  Google Scholar 

  46. M.C. Hickey, J.S. Moodera, Phys. Rev. Lett. 102(13), 137601 (2009). https://doi.org/10.1103/PhysRevLett.102.137601

    Article  ADS  Google Scholar 

  47. M. Fähnle, D. Steiauf, C. Illg, Phys. Rev. B 84(17), 172403 (2011). https://doi.org/10.1103/PhysRevB.84.172403

    Article  ADS  Google Scholar 

  48. M. Fähnle, D. Steiauf, C. Illg, Phys. Rev. B 88, 21 (2013). https://doi.org/10.1103/PhysRevB.88.219905

    Article  Google Scholar 

  49. H. Suhl, IEEE Trans. Magn. 34(4), 1834 (1998). https://doi.org/10.1109/20.706720

    Article  ADS  Google Scholar 

  50. H. Suhl, Relaxation Processes in Micromagnetics (Oxford University Press, Oxford, 2007). https://doi.org/10.1093/acprof:oso/9780198528029.001.0001

    Book  Google Scholar 

  51. I.P. Omelyan, I.M. Mryglod, R. Folk, Comp. Phys. Comm. 151(3), 272 (2003). https://doi.org/10.1016/S0010-4655(02)00754-3

    Article  ADS  Google Scholar 

  52. S. Nicolis, P. Thibaudeau, J. Tranchida, AIP Adv. 7(5), 056012 (2017). https://doi.org/10.1063/1.4975132

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Pascal Thibaudeau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thibaudeau, P., Nicolis, S. Emerging magnetic nutation. Eur. Phys. J. B 94, 196 (2021). https://doi.org/10.1140/epjb/s10051-021-00211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00211-x

Navigation