Skip to main content
Log in

Crack propagation mechanism of titanium nano-bicrystal: a molecular dynamics study

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effects of temperature and twin grain boundary position on the crack propagation mechanism of pure \(\upalpha \)-Ti were studied by molecular dynamics simulation. Under room temperature, the twin grain boundary in the intergranular crack model can guide the crack propagation path and the formation of voids intensifies the crack propagation. With the increase of temperature, the brittle–ductile transition of \(\upalpha \)-Ti occurs and the dominant factor of plastic deformation changes from grain boundary to dislocation. When the twin grain boundary is rotated \(90^{\circ }\), the stress–strain curve shows that the elastic modulus and yield strength of the transgranular crack model are better than the intergranular crack model at room temperature. During the tensile process of the transgranular model, the twin boundary improves the strength by hindering the dislocation movement. A new dislocation source is formed at both ends of the grain boundary after fracture, which improves the plasticity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. R.R. Boyer, An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 213, 103–114 (1996)

    Article  Google Scholar 

  2. R.C. Feng, Z.Y. Rui, G.T. Zhang, C.F. Yan, X.B. Yi, Improved method of fatigue life assessment for TiAl alloys. Strength Mater. 46, 183–189 (2014)

    Article  Google Scholar 

  3. S.M. Ohr, An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater. Sci. Eng. 72, 1–35 (1985)

    Article  Google Scholar 

  4. D.R. Chichili, K.T. Ramesh, K.J. Hemker, The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater. 46, 1025–1043 (1998)

    Article  ADS  Google Scholar 

  5. K. Tesař, A. Jäger, Electron backscatter diffraction analysis of the crack development induced by uniaxial tension in commercially pure titanium. Mater. Sci. Eng. A 616, 155–160 (2014)

    Article  Google Scholar 

  6. B.W. Zhang, L.C. Zhou, Y. Sun, W.F. He, Y.Z. Chen, Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension. Mol. Simul. 44, 1252–1260 (2018)

    Article  Google Scholar 

  7. R.C. Feng, J.T. Lu, H.Y. Li, H. Cao, Z.Y. Rui, Effect of the microcrack inclination angle on crack propagation behavior of TiAl alloy. Strength Mater. 49, 75–82 (2017)

    Article  Google Scholar 

  8. R.C. Feng, H. Cao, H.Y. Li, Z.Y. Rui, C.F. Yan, Effects of vacancy concentration and temperature on mechanical properties of single-crystal \(\gamma \)-TiAl based on molecular dynamics simulation. High Temp. Mater. Process. 37, 113–120 (2017)

    Google Scholar 

  9. S. Ando, K. Oyabu, K. Hirayama, M. Tsushida, H. Tonda, Crack propagation behavior in nano size HCP crystals by molecular dynamic simulation. Key Eng. Mater. 297, 280–285 (2005)

    Article  Google Scholar 

  10. X.S. Shi, X.T. Feng, B.W. Zhang, Y. Sun, W.F. He, L.C. Zhou, Research on microstructure deformation mechanism of crack tip in titanium under tension along different orientations. Mol. Simul. 46, 440–447 (2020)

    Article  Google Scholar 

  11. J. Cai, C.W. Mi, Q. Deng, C.Y. Zheng, Effects of crystalline orientation, twin boundary and stacking fault on the crack-tip behavior of a Mode I crack in nanocrystalline titanium. Mech. Mater. 139, 103205 (2019)

    Article  Google Scholar 

  12. S. Ying, X.G. Zeng, The deformation mechanisms in process of crack propagation for alpha titanium with compounding microdefects. Adv. Mater. Sci. Eng. 2016, 1–13 (2016)

    Google Scholar 

  13. J. Ding, Y. Tian, L.S. Wang, X. Huang, H.R. Zheng, K. Song, X.G. Zeng, Micro-mechanism of the effect of grain size and temperature on the mechanical properties of polycrystalline TiAl. Comput. Mater. Sci. 158, 76–87 (2019)

    Article  Google Scholar 

  14. M. Lu, F. Wang, X.G. Zeng, W.J. Chen, J.Q. Zhang, Cohesive zone modeling for crack propagation in polycrystalline NiTi alloys using molecular dynamics. Theor. Appl. Fract. Mech. 105, 102402 (2020)

    Article  Google Scholar 

  15. L.G. Sun, X.Q. He, J.B. Wang, J. Lu, Deformation and failure mechanisms of nanotwinned copper films with a pre-existing crack. Mater. Sci. Eng. A 606, 334–345 (2014)

    Article  Google Scholar 

  16. H. Wang, D.S. Xu, R. Yang, Atomic modelling of crack initiation on twin boundaries in \(\alpha \)-titanium under external tensile loading along various orientations. Philos. Mag. Lett. 94, 779–785 (2014)

    Article  ADS  Google Scholar 

  17. W. Li, H. Nan, X.W. Qian, Y.J. Yin, Q. Xun, X. Shen, W. Yu, X. Feng, L.P. Zhu, J.X. Zhou, Atomistic simulation of crack propagation along \(\gamma \)-TiAl lamellar interface. IOP Conf. Ser. Mater. Sci. Eng. 529, 012042 (2019)

    Article  Google Scholar 

  18. H. Cao, Z.Y. Rui, W.K. Chen, R.C. Feng, C.F. Yan, Crack propagation mechanism of \(\gamma \)-TiAl alloy with pre-existing twin boundary. Sci. China Technol. Sci. 62, 1605–1615 (2019)

    Article  ADS  Google Scholar 

  19. H.X. Zong, X.D. Ding, T. Lookman, J. Li, J. Sun, Uniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: a molecular dynamics study. Acta Mater. 82, 295–303 (2015)

    Article  ADS  Google Scholar 

  20. P. Hirel, Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015)

    Article  ADS  Google Scholar 

  21. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  22. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 2154–2162 (2010)

    Google Scholar 

  23. T. Tsuru, Y. Shibutani, T. Hirouchi, A predictive model for transferability of plastic deformation through grain boundaries. AIP Adv. 6, 015004 (2016)

    Article  ADS  Google Scholar 

  24. S. Goel, N.H. Faisal, X.C. Luo, J.W. Yan, A. Agrawal, Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J. Phys. D Appl. Phys. 47, 994–1004 (2014)

    Google Scholar 

  25. G.J. Ackland, Theoretical study of titanium surfaces and defects with a new many-body potential. Philos. Mag. Part A 66, 917–932 (1992)

    Article  ADS  Google Scholar 

  26. A. Serra, D.J. Bacon, A new model for \(\{1\,0\,\bar{1}\,2\}\) twin growth in hcp metals. Philos. Mag. A 73, 333–343 (1996)

    Article  ADS  Google Scholar 

  27. L. Chang, C.Y. Zhou, L.L. Wen, J. Li, X.H. He, Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire. Comput. Mater. Sci. 128, 348–358 (2017)

    Article  Google Scholar 

  28. D.D. Li, W.F. Wan, L.Q. Zhu, Y. Jiang, S.Q. Shao, G.J. Yang, H.Q. Liu, D.Q. Yi, S. Cao, Q.M. Hu, Experimental and DFT characterization of interphase boundaries in titanium and the implications for \(\omega \)-assisted \(\alpha \) phase precipitation. Acta Mater. 151, 406–415 (2018)

    Article  ADS  Google Scholar 

  29. K. Charles, Introduction to solid state physics. Am. J. Phys. 21, 547–548 (2005)

    Google Scholar 

  30. R.G. Hennig, T.J. Lenosky, D.R. Trinkle, S.P. Rudin, J.W. Wilkins, Classical potential describes martensitic phase transformations between the \(\alpha \), \(\beta \), and \(\omega \) titanium phases. Phys. Rev. B 78, 054121 (2008)

    Article  ADS  Google Scholar 

  31. Y.B. Chen, Z. Xue, S.L. Zhang, Y. Liu, X.Y. Zhang, First principles calculations of the influence of nitrogen content on the mechanical properties of \(\alpha \)-Ti. Mater. Chem. Phys. 248, 122891 (2020)

  32. C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Wiley, 2003). https://doi.org/10.1002/3527602119

  33. D.D. Li, W.F. Wang, L.Q. Zhu et al., Experimental and DFT characterization of interphase boundaries in titanium and the implications for \(\omega \)-assisted \(\alpha \) phase precipitation. Acta Mater. 151, 406–415 (2018)

    Article  ADS  Google Scholar 

  34. J.Z. Zhang, Y.S. Zhao, R.S. Hixson et al., Thermal equations of state for titanium obtained by high pressure–temperature diffraction studies. Phys. Rev. B 78, 054119 (2008)

    Article  ADS  Google Scholar 

  35. Y. Sun, Y. Liu, X. Chen, Z. Zhai, S. Izumi, Thermal-mechanical coupling effect on initial stage oxidation of Si (100) surface. J. Appl. Phys. 123, 135104 (2018)

    Article  ADS  Google Scholar 

  36. Y. Sun, Z. Zhai, S. Tian, X. Chen, Effect of oxidation on crack propagation of Si nanofilm: a ReaxFF molecular dynamics simulation study. Appl. Surf. Sci. 480, 1100–1108 (2019)

    Article  ADS  Google Scholar 

  37. Y. Wang, D. Lin, C.C. Law, Brittle-to-ductile transition temperature and its strain rate sensitivity in a two-phase titanium aluminide with near lamellar microstructure. J. Mater. Sci. 34, 3155–3159 (1999)

    Article  ADS  Google Scholar 

  38. S.G. Song, G.T. Gray, Influence of temperature and strain rate on slip and twinning behavior of Zr. Metall. Mater. Trans. A 26, 665–675 (1995)

    Article  Google Scholar 

  39. S. Kondo, T. Mitsuma, N. Shibata, Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries. Sci. Adv. 2, 1501926 (2016)

    Article  ADS  Google Scholar 

  40. T.C. Lee, I.M. Robertson, H.K. Birnbaum, TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos. Mag. A 62, 131–154 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 91860127 and 52075414).

Author information

Authors and Affiliations

Authors

Contributions

HW carried out the simulation and prepared the original draft. YS designed and supervised the work. BQ and XC provided scientific discussions.

Corresponding author

Correspondence to Yu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sun, Y., Qiao, B. et al. Crack propagation mechanism of titanium nano-bicrystal: a molecular dynamics study. Eur. Phys. J. B 94, 194 (2021). https://doi.org/10.1140/epjb/s10051-021-00199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00199-4

Navigation