Skip to main content
Log in

Hydrodynamic description of Weyl fermions in condensed state of matter

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Due to the many unique transport properties of Weyl semimetals, they are promising materials for modern electronics. We investigate the electrons in the strong coupling approximation near Weyl points based on their representation as massless Weyl fermions. We have constructed a new fluid model based on the many-particle quantum hydrodynamics method to describe the behavior of electrons gas with different chirality near Weyl points in the low-energy limit in the external electromagnetic fields, based on the many-particle Weyl equation and many-particle wave function. The derived system of equations forms a closed apparatus for describing the dynamics of the electron current, spin density and spin current density. Based on the proposed model, we considered small perturbations in the Weyl fermion system in an external uniform magnetic field and predicted the new type of eigenwaves in the systems of the electrons near the Weyl points.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. H. Weyl, Z. Phys. 56, 330 (1929)

    Article  ADS  Google Scholar 

  2. H. Weng et al., Phys. Rev. X 5, 011029 (2015)

    Google Scholar 

  3. S.M. Huang et al., Nat. Commun. 6, 7373 (2015)

    Article  ADS  Google Scholar 

  4. S. Jia, S.Y. Xu, M.Z. Hasan, Nat. Mater. 15, 1140 (2016)

    Article  ADS  Google Scholar 

  5. S.Y. Xu et al., Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  6. I. Belopolski, D.S. Sanchez et al., Nat. Commun. 7, 13643 (2016)

    Article  ADS  Google Scholar 

  7. A.R. Battye, A. Moss, Phys. Rev. Lett. 112, 051303 (2014)

    Article  ADS  Google Scholar 

  8. A. Shengyuan, Yang, SPIN, 6. No 1640003, 1 (2016)

  9. S.A. Parameswaran et al., Phys. Rev. X 4, 031035 (2014)

    Google Scholar 

  10. D. Bulmash, X.-L. Qi, Phys. Rev. B 93, 081103(R) (2016)

    Article  ADS  Google Scholar 

  11. Y. Alavirad, J.D. Sau, Phys. Rev. B 94, 115160 (2016)

    Article  ADS  Google Scholar 

  12. Y. Baum, E. Berg, S.A. Parameswaran, A. Stern, Phys. Rev. X 5, 041046 (2015)

    Google Scholar 

  13. Z.Z. Alisultanov, JETP 152, 986 (2017)

    Google Scholar 

  14. R. Loganayagam, P. Surowka, J. High Energy Phys. 2012, 97 (2012)

    Article  Google Scholar 

  15. F. Dayi, E. Kilinzarslan, E. Yunt, Phys. Rev. D 95(8), 085005 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. I. Białynicki–Birula, Acta Phys. Pol. B 26, 1201 (1995)

  17. Manisha Thakurathi and A. A. Burkov, Phys. Rev. B, 101, 235168 (2020)

  18. G.E. Volovik, JETP Lett. 103(2), 140 (2016)

    Article  ADS  Google Scholar 

  19. G.E. Volovik, JETP Lett. 98(8), 480 (2013)

    Article  ADS  Google Scholar 

  20. J. Nissinen, G.E. Volovik, JETP 127(5), 948 (2018)

    Article  ADS  Google Scholar 

  21. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, Phys. Rev. B 98, 035121 (2018)

    Article  ADS  Google Scholar 

  22. A. Lucas, R.A. Davison, S. Sachdev, Proc. Natl. Acad. Sci. 113, 9463 (2016)

    Article  ADS  Google Scholar 

  23. D.T. Son, N. Yamamoto, Phys. Rev. Lett. 109, 181602 (2012)

    Article  ADS  Google Scholar 

  24. J.Y. Chen, D.T. Son, M.A. Stephanov, H.U. Yee, Y. Yin, Phys. Rev. Lett. 113, 182302 (2014)

    Article  ADS  Google Scholar 

  25. Y. Hidaka, S. Pu, D.L. Yang, Phys. Rev. D 97, 016004 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Y. Neiman, Y. Oz, JHEP 1103, 023 (2011)

    Article  ADS  Google Scholar 

  27. J. Gooth, F. Menges, N. Kumar et al., Nat. Commun. 9, 4093 (2018)

    Article  ADS  Google Scholar 

  28. A. Lucas, J. Crossno, K. C. Fong, P. Kim and S. Sachdev, Phys. Rev. B 93, 075426 (2016)

  29. A. Principi and G. Vignale, Phys. Rev. Lett. 115, 056603 (2015)

  30. L.S. Kuz’menkov, S.G. Maksimov, Theor. Math. Phys. 118, 227 (1999)

    Article  Google Scholar 

  31. P.A. Andreev, L.S. Kuz’menkov, Prog. Theor. Exp. Phys. 2019, 053J01 (2019)

    Article  Google Scholar 

  32. P.A. Andreev, Phys. Rev. E 91, 033111 (2015)

    Article  ADS  Google Scholar 

  33. T. Koide, Phys. Rev. C 87, 034902 (2013)

    Article  ADS  Google Scholar 

  34. P.A. Andreev, L.S. Kuzmenkov, M.I. Trukhanova, Phys. Rev. B 84, 245401 (2011)

  35. P.A. Andreev, Chaos 31, 023120 (2021)

Download references

Acknowledgements

The work of Trukhanova Mariya Iv. is supported by the Russian Science Foundation under Grant No. 19-72-00017. The contribution of Pavel Andreev in this paper has been supported by the RUDN University Strategic Academic Leadership Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Mariya Iv. Trukhanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trukhanova, M.I., Andreev, P. Hydrodynamic description of Weyl fermions in condensed state of matter. Eur. Phys. J. B 94, 170 (2021). https://doi.org/10.1140/epjb/s10051-021-00183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00183-y

Navigation